2C2MA - Centre des Matériaux des Mines d'Alès (École des Mines d'Alès / Centre des Matériaux des Mines d'Alès
6 Avenue de Clavières
30319 ALES cedex
Téléphone : +33 4 66 78 50 00
Par courrier électronique : c2ma@mines-ales.fr - France)
IMT - MINES ALES - IMT - MINES ALES (IMT - Mines Ales École des Mines
Site de Clavières : 6 avenue de Clavières, 30319 Alès Cedex
Site de Croupillac : Rue Jules Renard, 30100 Alès
Site de Pau : Hélioparc (bâtiment Einstein 1), 2 avenue du Président-Pierre-Angot, 64053 Pau Cedex 9 - France)
Abstract : Epoxy materials have attracted attention for many applications that require fireproof performance; however, the utilization of hazardous reagents brings about potential damage to human health. Eugenol and cardanol are renewable, harmless resources (according to ECHA) that allow the achievement of synthesis of novel phosphorylated epoxy monomers to be used as reactive flame retardants. These epoxy building blocks are characterized by 1H NMR and 31P NMR (nuclear magnetic resonance) and reacted with a benzylic diamine to give bio-based flame-retardant thermosets. Compared to DGEBA (Bisphenol A Diglycidyl Ether)-based material, these biobased thermosets differ by their cross-linking ratio, the nature of the phosphorylated function and the presence of an aliphatic chain. Eugenol has led to thermosets with higher glass transition temperatures due to a higher aromatic density. The flame-retardant properties were tested by thermogravimetric analyses (TGA), a pyrolysis combustion flow calorimeter (PCFC) and a cone calorimeter. These analyses demonstrated the efficiency of phosphorus by reducing significantly the peak heat release rate (pHRR), the total heat release (THR) and the effective heat of combustion (EHC). Moreover, the cone calorimeter test exhibited an intumescent phenomenon with the residues of phosphorylated eugenol thermosets. Lastly, the higher flame inhibition potential was highlighted for the phosphonate thermoset.