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Non-target screening (NTS) methods are rapidly gaining in popularity, empowering researchers to search for an ever-increasing num
Given this possibility, communicating the confidence of identification in an automated, concise and unambiguous manner is beco
important. In this study, we compiled several pieces of evidence necessary for communicating NTS identification confidence and dev
learning approach for classification of the identifications as reliable and unreliable. The machine learning approach was trained using

four laboratories equipped with different instrumentation. The model discarded substances with insufficient identification evidence efficiently, while 
revealing the relevance of different parameters for identification. Based on these results, a harmonized IP-based system is proposed. This new NTS-
urrently
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 widely used five level system. It increases the precision in reporting and the repro-ducibility of current 
while being suitable for automation. 
1. Introduction

The global universe of chemicals is very complex and includes
hundreds of thousands of substances in commercial use [1e3]. In
recent years, advances in high resolution mass spectrometry
(HRMS) have revolutionized our ability to measure organic chem-
icals in awide variety of matrices, expanding the analytical window
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and rapidly increasing the popularity of suspect and non-target
analysis (NTS) [4,5]. These approaches are currently widely used
for the tentative identification of a large and still increasing number
of potential contaminants, especially polar and semi-polar ones, as
well as many endogenous compounds in different organisms [6,7].
Chemical studies often result in large lists of tentatively identified
substances [8,9]. This has created the need to communicate the
confidence in the identification in a way that reflects all the evi-
dence available [10]. This is essential for a consistent advancement
in the fields that rely on the analysis of organic substances at trace
level, including environmental chemistry [11].

Currently, in the last step of a target or suspect HRMS screening,
the analyst is obliged to spend a significant amount of time eval-
uating all proposed identifications case by case [1,12]. The analyst
relies on orthogonal analytical evidence (chromatographic reten-
tion behavior, isotopic profile, MS fragments, among others) and
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other additional metadata (e.g., number of patents, literature ref-
erences) [13,14]. Nevertheless, in the end, expert judgement is 
required to assign the given identifications a certain level of con-
fidence. This manual evaluation is time-consuming and lacks 
reproducibility, while the time required is increasingly moving 
beyond the realms of manual efforts due to the sheer numbers of 
screened compounds and samples [12,15]. So far, most environ-
mental studies report the confidence based on hierarchical degrees 
of confidence [10], ranging from Level 5 (exact mass), Level 4 
(unequivocal molecular formula), Level 3 (tentative structure), 
Level 2a and 2b (probable structure) through to Level 1 (confirmed 
identification). In many cases, while the aforementioned levels are 
certainly useful (as is evident from their widespread and increasing 
adoption), it is still difficult to communicate the evidence associ-
ated with the assigned identification confidence level in a concise 
and unambiguous manner. Early attempts to include identification 
evidence via identification points (IPs) described in the Commis-
sion Decision 2002/657/EC were already implemented in the first 
NORMAN Collaborative Trial on non-target screening in 2013/14 
[16]. Recently, this approach was also applied to communicate the 
confidence in the identification of analytes for target analysis [17]. 
This IP system considers retention time, mass accuracy, isotopic fit 
and fragmentation, taking advantage of the capacities of the HRMS 
instruments, but it is not yet explicitly implemented as a standard 
for non-target screening (NTS) [16,18]. Other recent efforts include 
the integration of automated level system functionality in patRoon 
e where users can adjust the requirements [19] and specific 
guidance released by the per- and polyfluoroalkyl substance (PFAS) 
community [11]. A complementary system that allows the com-
munity to understand the identification evidence associated with a 
reported compound identification in a rapid, concise and repro-
ducible manner is necessary. A system based upon identification 
points (IPs) and thus compatible between target and non-targeted 
approaches would be a valuable addition to the field.

There is an urgent need to automate the evaluation process and 
create a more reproducible and harmonized approach [20], due to 
the number of chemicals (or features; hereafter “chemicals” for the 
purpose of this manuscript) involved in NTS. Machine learning 
models are well suited to these tasks. Ideally, such a model should 
produce a score to assist in the reporting, limiting the amount of 
manual work required by the analyst, but present sufficient infor-
mation to enable quick and efficient manual quality control. This 
allows a focus of efforts on the most challenging cases of greatest 
importance to the study outcomes. One of the drawbacks of this 
approach is that machine learning models must be trained indi-
vidually for each instrument and analytical strategy used by the 
laboratories for optimal performance. The large variety of in-
struments and data acquisition methods further complicates the 
situation and highlights the need for harmonization of data treat-
ment [21]. To create such informative machine learning models, it is 
critical to identify the most informative parameters using domain 
knowledge. Once such models are built, these provide deeper in-
sights into the importance of the parameters involved and can 
eventually be used to propose an easy-to-follow generic IP system, 
automatable and applicable under any instrumental and data 
acquisition conditions.

This article takes a close look at the challenges in harmonizing 
the NTS identifications, focusing on liquid chromatography mass 
spectrometry (HRMS/MS). An interpretable machine learning 
approach for classification of NTS identification confidence was 
developed, capable of automatically discarding substances with 
insufficient evidence for reliable identification. The described 
approach can be implemented by any laboratory performing NTS 
analysis. It provides clear benefits in terms of accurately describing 
the evidence associated with identified substances. Moreover, it
progresses towards the development of automatic prioritization
schemes for the management of chemicals. An IP-based system is
proposed for the communication of evidence accompanying iden-
tification confidence based on the results obtained here, the in-
sights gained by this exercise and the participation in NORMANNTS
collaborative trials e.g. Refs. [16,22] and other ongoing trials. While
developed on LC-ESI-MS/MS, it is applicable to any soft ionization
technique (e.g., GC-APCI-HRMS/MS and GCeCIeHRMS/MS), given
that they produce themolecular ion and considerably less fragment
ions. This new NTS-oriented system is compatible and comparable
with target analysis and adds more precision and reproducibility to
current approaches, while being suitable for automation e a key
necessity required for high throughput NTS screening.

2. Parameters/evidence used for NTS identification

NTS identification of polar and semi-polar organic chemicals is
based on the available information, commonly generated by LC-
HRMS/MS systems. Several pieces of evidence provide informa-
tion about the identity of a compound. However, not all are equally
relevant or even available in all cases. While some information is
critical and always available (e.g., mass accuracy), other informa-
tion increases the degree of confidence to a lesser extent and are
not as essential. Likewise, not all pieces of evidence lead to a
concise measurable parameter that can be directly transformed
into IPs.

This section describes the parameters that should be considered
in an objective, concise and potentially automatized IP-based sys-
tem and discusses their possible role in the harmonization of NTS
identifications as well as their automation potential. The parame-
ters are divided into those that should be considered by any
consistent IP-based system and others that would add additional
confidence but where the implementation is more challenging.

2.1. Essential parameters/evidence for NTS identification confidence

1. Mass accuracy: The accurate mass of an ion is the mass exper-
imentally determined (and recalibrated with a reference mass
standard if applicable) in the mass spectrometer.This is the
parameter upon which HRMS identifications rely and is the
starting point in any identification, either to match a target,
check the potential presence of a suspect, to perform exact mass
searches, or to assign molecular formulas in non-target studies.
The parametermass deviation between themeasured (accurate)
and theoretical (exact) masses should be below the acceptable
threshold according to the instrument manufacturer (for most
of the instruments <5 ppm at m/z 200 and/or <2 mDa; modern
instruments or internal calibration can achieve <2 ppm) and
should be verified with regular calibration. The confidence in-
creases with lower mass deviation.

2. Retention Time (RT) information: Retention time plausibility is
a requirement to reach a certain identification confidence. Many
RT prediction models have been developed in the literature and
have proven to improve suspect and non-target screening
[23e25]. There is an increasing need for comparable and
harmonized RT in LC-HRMS/MS among different laboratories. In
this regard, flexible and system independent unified retention
time indices (RTI) can help improve the automation of NTS ap-
proaches by reducing the number of false positives in a first
screening step. For GC-(HR)MS, the n-alkanes mixture is most
commonly used for retention indexing and calculation of the
Kovat's index [26], which is the established protocol in the NIST
mass spectral library. For LC-MS, one such RTI method is based
on carefully selected calibrants that can be easily used and
applied under any liquid chromatographic conditions [27].



3. Isotopic fit: The isotopic pattern that forms in the mass spec-
trum by the separation of the various isotopes of the atoms
present in a molecule is used to increase the confidence in the
element and molecular formula assignment. Although it is
certainly a useful parameter (especially for halogenated mole-
cules and other molecules with distinct isotopic patterns), in
many cases when working at trace levels the intensity of the
isotopic peaks is so low that it cannot be observed or can deviate
substantially from the theoretical pattern. Therefore, a less ac-
curate isotopic fit for low intensity masses should not be used as
a strong argument to discard candidates during identification. It
is quite frequent phenomenon that the lack of isotopic fit results
in false non-detections, impacting drastically automated eval-
uations. Isotopic patterns can also be used to recognize the
presence of certain elements, such that this information can be
used without necessarily strictly restricting the identification
efforts to a specific molecular formula.In the evaluation of iso-
topic fit, it is important to consider the importance of the
isolation window in data dependent data: If it is above 1 Da,
isotopic peaks can appear in the MS/MS, which can be helpful to
identify heteroatoms, but may result in unwanted interferences
in the spectrum. Wide isolation windows can be beneficial for
matrix-free samples such as drinking water. However, a con-
servative choice of isolationwindow below 1 Da is preferable for
more complex samples such as biological or wastewater sam-
ples, which suffer from matrix interferences.

4. Number of fragments ions/Presence of qualifier fragment
ions: Compound identification requires the measurement of
MS/MS spectra for individually selected precursors [data
dependent acquisition (DDA)] or simultaneously for all precur-
sor ions (data independent acquisition (DIA)). The number of
fragments constitutes critical information for the reliability of a
given identification. However, not all fragments provide the
same level of diagnostic information, as some fragments are
very common to many chemicals, while others are very specific
to only a certain chemical or class of chemicals. The absence of a
qualifier fragment ion for a given chemical (e.g 68.9958 corre-
sponding to eCF3 for perfluorinated compounds) can be an
exclusion criterion. Other more common fragments (such as
77.95736, for [SO3]-, 95.960697 for [HPO4]þ or a lowmass CHON
fragment) are less informative and should have less influence on
the degree of confidence of the identification. An important
aspect is that low mass fragments can have high variations in
mass accuracy due to being at the lower end of instrument
detection ranges. Establishing a cut off for a minimum number
of matching fragments can help automation. For example, cases
where less than two experimental fragments are detected can
be automatically flagged. In this manner a binary variable (TRUE,
FALSE) can be obtained. Then, the analyst should be cautious
with the identification and manual inspection may be required.
Three main aspects must be evaluated: the fragmentation po-
tential (total number of fragments), number of relevant frag-
ments, and presence/absence of those. It is worth considering
detected fragments between different chromatographic runs
within the same batch. Chemicals detected with high intensity
in a chromatogram will often exhibit a clearer fragmentation
pattern (including a higher number of fragments and consistent
ratios between them) than the same substances detected in
lower intensity in other chromatograms within a batch. Frag-
ments that match those present in spectral libraries obtained in
an experimental manner (e.g. MassBank [28], MoNA [29],
mzCloud [30]) provide more confidence than those predicted in
silico. It is worth noting that there are many different in silico
prediction tools such as CSI:FingerID [31], CFM-ID [32], MetFrag
[33], MAGMa [34] and other approaches, the performance of
which has not been thoroughly analyzed within DSFP.

5. Presence of MS/MS spectra from DDA: Different acquisition
modes provide different degrees of confidence in fragment ion
assignment. DDA data increases the confidence of the assigned
fragments since the chances that they are generated from the
parent compound are higher. Therefore, those fragments should
provide more IPs than those obtained with DIA.

6. Presence of heteroatoms in fragments (if available) and
plausibility of their molecular formulas: It is important to
assess the molecular formula assignment of the fragments,
which should agree with the formula of the compound. The
presence of heteroatoms in each structure facilitates its identi-
fication. The presence of these heteroatoms in the associated
fragment ions (many times even with a distinctive isotopic
pattern if the isolation window is >1 Da) provides important
evidence. Despite the ongoing efforts, HRMS libraries with
appropriate molecular formula annotations for fragments have
not beenwidely implemented. While the situation is improving,
improving the automatic extractability of such information
would greatly facilitate automated interpretation.
2.2. Additional parameters/evidence for NTS identification
confidence

7. Presence of adduct ions: The presence of related adduct
ions, although not always available, can help increase the
certainty of the neutral exact mass calculated from the pre-
cursor ion. Therefore, the detection of adducts can help to
avoid focusing on neutral masses calculated from the incor-
rect adduct (e.g., incorrect assumption of [MþH]þ for a
[M þ NH4]þ signal) or in source fragments, both of which are
common for example in electrospray ionization. There are
many clustering approaches such as nontarget [35] and
RAMClustR [36] among others, that can help with
automation.

8. Fragment ratio at least between quantifier and qualifier
ions: The ratios between the detectedMS/MS fragments for a
given chemical in LC-HRMS/MS analysis should remain
constant (within a given tolerance) for the same/equivalent
collision energy, in an analogous manner the ratio of in-
tensities between transitions used in quantification via
selected reaction monitoring mode (SRM). The evaluation of
these ratios can significantly increase the degree of confi-
dence of the identifications in ambiguous situations. The
variation of the fragmentation ratio under different collision
energies can also be informative. Unlike GC-MS libraries, the
lack of standardization of the collision energy of the LC-
HRMS libraries prevents the automatization of the frag-
ment ratio at this stage.

9. Mass of fragments: Fragment ions with higher mass can
provide more specific structural information than lower
mass fragments. Fragments with lower masses suffer from
more interference, particularly when high collision energies
are used. This weighting approach has been applied suc-
cessfully by the software of NIST. Low mass fragments also
tend to represent common substructures present in many
structures.While this provides some structural evidence, this
can apply to many possible candidates.

10. Additional dimensions to the data: The dimension of the
available data can be increased by the addition of separation
methods. In this category, one of the most promising de-
velopments is ion mobility separation (IMS). IMS separates
ionized compounds based on their charge, shape and size,



facilitating the removal of co-eluting isomeric/isobaric spe-
cies [37]. Therefore, it helps to obtain cleaner mass spectra
(facilitating data interpretation), while also providing infor-
mation about the collision cross section of the molecule, thus
providing additional evidence. The drift times provided by
IMS are expressed as collision cross-section (CCS) values and
may further contribute to delineating database hits and
confirming structure identification. CCS is a robust mea-
surement suitable for use as an additional parameter in NTS
identification, where available. Its importance will increase
as the number of instruments with IMS on the market in-
crease and becomes available to the laboratories, along with
efforts to include CCS values in open resources [37,38]. Other
efforts to increase the information available for identification
include the use of different chromatographies, ionizations
and even sample preparation methods but their detailed
explanation goes beyond the objective of this study.

3. Automated allocation of identification evidence using
machine learning

3.1. Implementation of parameters

The essential parameters for NTS identification confidence
(Section 2.1) were used to build classifiers able to differentiate
between the availability of sufficient or insufficient evidence for
confident identification. To achieve this, the batch screening func-
tionality of NORMAN Digital Sample Freezing Platform (DSFP) [20]
was upgraded to output the following scores:

1) mass accuracy (mzscore),
2) RT index information (RTIscore),
3) isotopic fit (IsoFitscore),
4) number of fragments ions considering both DIA and DDA

(Fragmentscore),
5) presence of MS/MS spectra from DDA as a TRUE/FALSE variable

(DDAscore),
6) fit of molecular formula of fragments (FitMolFormscore) and
7) spectral similarity (SpecSimilscore).

mzscore, RTIscore and Fragmentscore compare experimentally
measured values (exp) with theoretically calculated (theor) or
predicted (pred) values and are given from the equations presented
in Table 1.

3.2. Experimental/measurement data

Measurements from four organizations (the National and
Kapodistrian University of Athens (UoA), the French National
Institute for Industrial Environment and Risks (INERIS), the
Table 1
Equations for the calculation of mzscore, RTIscore and Fragmentscore. The subscript abbreviat
predicted value.

Equation

mzscore ¼ 1� absðmzexp �mztheorÞ
minðmzexp;mztheorÞ

*
106

tolerated accuracy in ppm

RTIscore ¼ 1� absðRTIexp � RTIpredÞ
1000

Fragmentscore ¼ number of uniquesðmatched fragment ions in DIA∪matched fragmen
total number of fragments in the library

The IsoFitscore and FitMolFormscore were defined based on MOLGEN-MS/MS [39,40]. D
available. SpecSimilscore was calculated based on OrgMassSpecR package [41]. Where ex
spectrum is not available (e.g., because there is no record inMassBank), thematchwith the
from 0 to 1.
Institute of Environmental Assessment and Water Research
(IDAEA-CSIC)) and the Swiss Federal Institute of Aquatic Science
Technology (Eawag) were used to generate the dataset used here.
The organization performed analysis using the following HRMS
instruments: the quadrupole time of flight (Q-TOF) mass analyser
maXis Impact by Bruker, the 6550 iFunnel Q-TOF by Agilent Tech-
nologies, the Q-Exactive™ Orbitrap and Q-Exactive™ Plus Orbitrap
by Thermo Fischer Scientific, respectively.

The dataset of UoA included 18 mixtures of substances, con-
taining in total 383 individual reference standards at final con-
centration 50 ng mL�1. The mixtures were organized based on the
chemical class of the substances (e.g., separate mixtures of pesti-
cides, pharmaceuticals, industrial chemicals etc.). These mixtures
were injected on an Acclaim™ RSLC C18 column (2.1 � 100 mm,
2.2 mm; Thermo Fischer Scientific) coupled to a LC-ESI-QTOF from
Bruker using DIA and DDA (5-most abundant precursors per scan)
according to instrumental settings presented in detail elsewhere
[17].

The dataset of INERIS included in total 91 pesticides, which were
prepared at concentrations of 1, 10 and 50 ng mL�1. The reference
standards were organized in four different mixtures. The mixtures
were separated by a ZORBAX® SB-Aq (1.8 mm, 2.1 � 150 mm;
Agilent Technologies) column and were detected by an Agilent
6550 iFunnel QTOF. The samples were analyzed using DIA acqui-
sition according to instrumental settings presented in detail else-
where [42].

The dataset of IDAEA-CSIC contained 21 pesticides in one mix,
83 compounds of various classes in another mix and 129 com-
pounds of various classes in another mix (all at concentration
50 ng mL�1). The samples were separated using a Cortecs C18
column (2.1 � 100 mm, 2.7 mm; Waters), preceded by a guard
column of the same packaging material and were detected using a
Q-Exactive™ Orbitrap mass analyser (Thermo Fisher Scientific).
Instrumental details can be found in the respective publications
[43,44].

The dataset of Eawag was created using groundwater samples
spiked with in total 519 compounds at two concentration levels (10
and 100 ng L�1). Separation was achieved on an Atlantis® T3 col-
umn (3 mm, 3.0 � 150 mm; Waters) and the detection on a Q-
Exactive™ Plus Orbitrap mass analyser (Thermo Fisher Scientific)
with electrospray ionization. The samples were analyzed using
DDA acquisition according to instrumental setup described else-
where [45].

Detailed information on the instrumental setups and acquisi-
tions can be found in Table S1.

3.3. Establishment of the machine learning model

3.3.1. Dataset generation
The data of all participants was uploaded to the NORMAN DSFP
ion exp indicates experimental value, theor indicates theoretical value, pred indicates

Equation number

eq. 1

eq. 2

ts in DDAÞ eq. 3

DAscore is a binary variable indicating whether data-dependent HRMS/MS scan is
perimental HRMS/MS is not available, SpecSimilscore ¼ 0. If an experimental mass
CFM-ID (v. 4.0) in-silico predictedmass spectrum is considered [32]. All scores range



using the established contribution procedure and was screened 
using the batch-mode utility [20]. The NTS workflow has been 
validated and explained in detail elsewhere [20]. Briefly, the 
workflow uses the centWave algorithm for peak picking [46] with 
previously optimized ppm and peakwidth parameters through the 
IPO R-package [47]. Optimized peak-picking parameters can be 
found in Table S2. The peak picking workflow searches for 
consecutive masses within a mass error threshold forming peak 
shape in chromatographic dimension. The next step is compo-
nentization, which is a procedure for grouping peaks coming from 
the same compound (e.g., adducts, isotopic peaks). Componenti-
zation is accomplished with the nontarget R package [35].

The aim of the screening was to generate a dataset with ex-
amples of successful and unsuccessful identifications. Here, un-
successful identifications originate from the pick-up of signals in 
samples with acceptable mass accuracy and plausible retention 
time index. The generated dataset included in total 1424 instances 
(rows) after the exclusion of substances (<1%) that were not 
detected in the chromatographic data due to analytical reasons 
(either low concentration or insufficient sensitivity). The detected 
substances were accompanied with the individual scores from 
categories 1 to 7 (described previously in section 3.1). The gener-
ated dataset is provided in the supplementary excel file. The col-
umn “Spiked” is the label (response variable) and indicates 
whether a compound was spiked in the samples or not.
3.3.2. Machine learning
This dataset was used to create the following classifiers: deci-

sion tree (DT), support vector machine (SVM), logistic regression 
(LR), gaussian Naive Bayes (NB), random forest (RF), k-nearest 
neighbors (kNN). More complex ensemble methods (e.g., XGBoost) 
were not used for modeling. Modeling was performed using the 
scikit-learn python package [48]. The script and calculations are 
available at https://github.com/nalygizakis/IPscore.

The performance of the classifiers was tested using 10-fold cross 
validation and default parameters [48]. RF outperformed the other 
classification models for this specific modeling task (Fig. 1a). Given 
that the training and evaluation sets were unbalanced (not equal 
instances per class), the overall macro-averaged F1 score was used 
as the evaluation metric of the accuracy. The macro-averaged F1 
score is calculated by taking the arithmetic mean of all the per-class 
F1 scores. The F1-score combines the precision and recall of a 
classifier into a single metric by taking their harmonic mean. 
Satisfactory accuracy was achieved for kNN and SVM, whereas
Fig. 1. a. Performance of various classification models using 10-fold cross-validation. Abbre
(NB), random forest (RF), k-nearest neighbors (kNN), and decision tree classifier (DT), 1b. C
yielded accuracy 79.2%. In total, 235 instances were classified correctly (121 þ 114) and 50
similar but lower F1 score was observed for DT, LR and NB.
RF was selected for further optimization of the hyper-

parameters, as it showed the best performance. The following
parameter grid was investigated:

� Number of estimators: 40 values from linear space 10 to 1000
� Maximum depth: 40 values from linear space 2 to 50
� Minimum samples split: 20 values from linear space 1 to 50
� Minimum samples leaf: 20 values from linear space 1 to 50
� Bootstrap: parameters: ‘True’ and ‘False’
� Maximum features: parameters: ‘auto’, ‘log2’, ‘sqrt’

After a 1-h, six-core experiment on an Intel® Core i9-10885H
CPU, the optimized parameters were: 873 for number of estima-
tors, 50 for maximum depth, 3 for minimum samples split, 3 for
minimum samples leaf, ‘True’ for bootstrap and ‘log2’ for maximum
features. The optimized RF model after hyperparameter tuning
provided accuracy of 79.2% in the test set (Fig. 1b). In total, 235
instances/compounds were classified correctly (121 þ 114) and 50
instances/compounds were classified incorrectly.
3.3.3. Importance of parameters
The parameter importance ranking of the optimized RF model is

presented in Table 2. As shown in Table 2, Fragmentscore proved to
be the most decisive parameter for the discrimination of the
identifications. It is important to note that Fragmentscore considers
the number of unique fragments detected in both DDA and DIA
(where both are available). One reason mass accuracy was not
ranked high was that it is also used indirectly in the parameter
Fragmentscore. Moreover, the way that negative hits were defined
diminishes the possible importance of mzscore and to a lesser extent
RTIscore. mzscore proved less important because exact masses are not
unique parameters and the negative hits used in the study are per
definition within the defined mass tolerance. Since the fragments
capture additional complementary information, they ended up
with higher relevance and this made mzscore alone less relevant.
Finally, DDAscore proved to be highly correlated with FitMolForm-
score (r ¼ 0.75) thus it was excluded from the evaluation.

Results from the machine learning approach showed that the
number and the quality of the fragments are the important pa-
rameters for a reliable identification. Isotopic fit also proved to play
an important role. RTI, mass accuracy and spectral similarity scores
were ranked lower, but provided additional meaningful informa-
tion for the classifier. Based on the outcomes of the implemented
viations: support vector machine (SVM), logistic regression (LR), gaussian Naive Bayes
onfusion report for the optimized random forest model in the training set. The model
instances were classified incorrectly.

https://github.com/nalygizakis/IPscore


Table 2
Parameter importance of the optimized RF model. The scores Fragmentscore, FitMolFormscore and SpecSimilscore transfer the spectral information (purple background). Iso-
Fitscore, RTIscore, and mzscore were colored with green, yellow and orange background, respectively. These colors were applied to all graphical elements.
approach and the insights gained by the exercise, the next section
details a simplified IP-based system for the communication of
identification confidence.

The IP Score system proved helpful. However, it is difficult to be
implemented for every laboratory, since it is unreasonable to
expect all laboratories to establish their own machine learning-
based system. Furthermore, In order to bring non-target
screening at regulatory level, there is a clear need for the genera-
tion of a harmonized identification scoring. This identification
scoring system must allow communication of the identification
confidence in an automated, concise and unambiguous manner
that reflects all the available evidence. Reproducibility and trans-
parency in confidence communication will open up possibilities to
develop novel prioritization schemes for the management of
chemicals. Therefore, the machine learning approach was used as
the basis for the proposal of the IP system described in section 4.
The IP system is based on a combination of the results gained
within this exercise, intuition and common knowledge, which may
be difficult to implement with machine learning.
4. Proposed identification points (IP) system in target & non-
target HRMS analysis

In this section, an IP system is proposed to help in the harmo-
nization of HRMS-based identifications for target and non-target
screening. This system aims at being simple and easy to use, with
only objective criteria as outlined above. The maximum score of an
identification can reach 1.00 for target screening and 0.75 for sus-
pect and non-target screening. The purchase of reference standard
for the confirmation of the identification (i.e. target analysis) is
mandatory to achieve the highest IP score of 1.00. The fact that the
system scales from 0 to 1 is important to communicate the iden-
tification confidence to non-experts. It can transfer the information
immediately to non-experts and can help implement and embed
non-target screening into future regulatory frameworks in an easily
interpretable manner.

Accuracy below 2 mDa/5 ppm for the precursor ion was regar-
ded asmandatory. Only for target screening, a retention timematch
with a reference standard (±0.2 min in target screening) results in
an IP increase by 0.40 points. The ±0.2 min decision was based on
the decision of European Commission 2002/657/EC [49] and the
fact that robustness of the LC systems has greatly improved during
the last decades. For non-target screening, where retention time
match is not available, retention time index (RTI) is used. In case of
RTI match (typically ± 20% in suspect/non-target screening) the IP
is increased by 0.15 points (decision based on Table 2). The toler-
ance on RTI depends on the structure of the suspected molecule,
the QSRR model and the RTI system that is used. The number of IPs
can increase by 0.20, in case of excellent isotopic pattern fits match
(decision based on Table 2). Fragmentation information can
increase the IP by a tital of 0.40 (experimental spectra available)
and by a total of 0.20 (in-silico spectra available). This decision was
based on Fragmentscore, SpecSimilscore and partially on FitMol-
Formscore (Table 2), because FitMolFormscore does not explicitly
correspond to fragmentation. In-silico fragmentation score is not
considered in cases where meaningful experimental fragmentation
is available. The 0.40 points due to fragmentation match with
experimental spectra are split: 0.20 points in case of match of the
most abundant fragment and 0.20 with the remaining fragments. A
penalty of �0.10 points is applied in case of a compound with poor
fragmentation (�2 fragments). Finally, a penalty of �0.10 points is
applied in case there is no recorded data-dependent scanwith clear
isolation and fragmentation of the precursor ion. This penalty re-
lates to the fact that DIA suffers from matrix interferences. Intro-
duction of additional separation dimensions (e.g. ion mobility) or
other advanced acquisition types (e.g. SWATH MS) can make DIA
acquisition more efficient and this penalty could thus be elimi-
nated. However, this aspect has not been thoroughly investigated
yet.

Overall, to avoid subjective evaluations, the use of software to
calculate the isotopic fit is advised. The use of a single software
(either vendor or open source) for a given case-study is highly
encouraged. The reason for this recommendation is that there are
various methodologies to calculate isotopic fit (e.g., dot product and
overlap percentage). In this way, unbiased identification evalua-
tions can be achieved in a flexible manner. The IP value can be
increased by the determination of previously known fragment ions
with accurate mass at the same RT (i.e., target screening). For in
house method comparison, the same system and instrumental
conditions applying proper quality controls to ensure RT accuracy
and MS/MS spectra consistency should be used. An attempt to
associate the IP system (Table 3) with thewidely used identification
levels [10] is presented in Table 4. Level 1 (confirmed identification)
requires IP score higher than 0.75. Identifications of level 2 (prob-
able structure) require IP score from 0.60 to 0.75, whereas level 3
(tentative identification) requires score higher than or equal to 0.50
and less or equal to 0.60. To claim a Level 4 (unequivocal molecular
formula) identification, the score should be below 0.5 and higher or
equal to 0.2. All identifications that receive below 0.20 IP can be
presented as level 5 (exact mass) identifications.
4.1. Application of IP score in target screening

The first example (Fig. 2a) shows an ideal target identification:
the analysis of oxazepam in surface water. In this case, a good peak
for the precursor ion (m/z: 287.0582) was determined at the exact
RT, along with a good isotopic profile (very clear with the presence
of one Cl atom) and qualifier fragments at the same RT, reaching 1.0
IP, which translates to level 1 (Table 4).

Since target analysis does not always lead to such clear IP



Table 4
Connection of the identification levels [10] with the IP score
proposed in this study.

Identification level IP Score

1 >0.75e1.00
2 >0.60e0.75
3 0.50e0.60
4 >0.20-<0.50
5 0.00e0.20

Table 3
Proposed Identification Point (IP) system in target and non-target HRMS analysis.
identification, the second example (Fig. 2b) shows the target
identification of tramadol in the wastewater from the national
French campaign [50]. In this case, the precursor ion (m/z:
264.1958) was determined with an acceptable RT (±0.2 min) and
isotopic fit, reaching 0.60 IP. Only one qualifier ion (the most
intense) could be determined, adding 0.20 IP to finally reach a score
of 0.80 IP. The score is penalized by 0.10 because the acquisition has
been performed in DIA, reaching to 0.70 IP, corresponding to a level
2 ranking. It would have qualified as level 1 (score >0.75) if DDA
acquisition had been performed.

A third example given in Fig. 2c shows the determination of
perfluorohexanesulfonic acid (PFHxS), which received just 0.60 IP,
due to the lack of fragmentation of PFHxS. The lowest IP for target
compounds was set to 0.60 IP (Table 4). The lower IP shows clearly
that the identification has a lower confidence despite the matching
reference standard. This information is often not provided for
target analysis. This example does not qualify for level 1, but instead
is given a Level 3.

Several other examples of the application of the IP system are
provided for both target and suspect/non-target screening in the
following sections and in the SI (Table S3 for target screening and
Table S4 for non-target screening). Table S3 provides 11 additional
target screening examples. More specifically, it provides 1) an
example with maximum possible score, 2) an ideal target screening
example, 3) an acceptable target example, 4) a target example with
isotopic fit but without fragments, 5) an ideal target example in
DIA, 6) another target example in DIA, 7) a poor target example in
DIA, 8) a target example without isotopic fit and fragments, 9) a
target example with no isotopic fit, 10) a target example with no
isotopic fit and no other experimental fragments, and 11) a target
example without retention time but isotopic fit and fragments. The
examples of Table S3 match the IP to the well-established identi-
fication levels [10].
4.2. Application of IP score in suspect screening

In suspect screening, identifications are more challenging given
the lack of reference standards. Thus, the maximum score in a
suspect identification is 0.55 IP for in silico predicted fragments and
0.75 for experimental fragments. The identification of the accurate
mass of the parent ion with a plausible RT via a predicted RTI
provides 0.15 IP. Isotopic fit can provide an additional 0.20 IP. While
the presence of heteroatoms may provide additional meaning to
isotopic fit, this is not reflected in the IPs to avoid additional
complexity in the scheme. The presence of all fragments included
in a good quality library can lead to a maximum of 0.40 IP. However,
penalties in the score are applied if (i) only DIA data is available
(�0.10), and (ii) the database for other experimental fragments
(apart the most intense ion) includes two or less fragments (�0.10
IP).

Fig. 3a shows an example of the suspect identification of irbe-
sartan. In this case, an intense and well-shaped peak was detected
for the precursor ion (m/z: 429.2397) at a plausible RT according to
the RT prediction model and excellent isotopic fit, obtaining 0.35 IP.
The seven fragments included in the library were detected in the
experimental spectra, providing additional 0.40 IP up to a total
score of 0.75 IP, leading to a level 2 identification.

A second example of suspect screening with a slightly lower
score is given in Fig. 3b, showing the identification of triethyl
phosphate (TEP). A score of 0.18 IP (out of 0.20 IP) was assigned for
the isotopic fit, while the RTI within acceptable range (0.15 IP). To
avoid subjective evaluations, the vendor software (Agilent Mass-
Hunter® Workstation Software) was used to calculate the isotopic
fit, which was found to be 0.18 IP. In this case the three fragments
present in the library were also detected (0.40 IP). However, given
that a penalty is applied since only 2 other experimental fragments
(apart the most intense one) were present, the identification ended
up with a score of 0.63 IP, corresponding to level 2.



Fig. 2. Target examples for IP identification: a) Oxazepam (DDA acquisition of surface water sample); b) tramadol (DIA acquisition of effluent wastewater - the compound is
frequently confused with O-desmethyl-venlafaxine, which is the first peak shown in the chromatogram), c) PFHxS example with 0.60 IP evidence.
In the final example, less confidence was achieved in the case of
nordiazepam (Fig. 3c). The precursor ion was found at a plausible
RT and good isotopic fit, indicating the presence of heteroatoms.
The most intense fragment was detected (þ0.20). Moreover, 5 of
the 10 other fragments present in the library were detected,
providing þ0.10 IP, but since only DIA data was available (�0.10 IP),
this led to a total score of 0.55 IP and a level 3 identification.
Table S4 provides 13 additional suspect/non-target examples.

More specifically, it provides 1) an example with the maximum
possible score, 2) an ideal non-target example, 3) an acceptable
non-target example in DIA, 4) an example with partial fragment
match in DIA, 5) an examplewith partial fragmentmatch in DDA, 6)



Fig. 3. Suspect examples for IP identification: a) Irbesartan (DIA acquisition of wastewater sample); b) Nordiazepam (DIA acquisition of wastewater sample); triethyl phosphate
(TEP) (DIA acquisition) in effluent wastewater sample.
an example with partial isotopic fit, 7) an example with partial
isotopic fit and partial fragment match, 8) an example without
fragments, 9) an example without isotopic fit, 10) an example with
only predicted RTI match, 11) an example without predicted
retention index but ideal match for other scores, 12) an ideal
example with match for the most intense fragment only, and 13) an
ideal examplewithmatch for predicted fragments. The examples of
Table S4 match the IP to the well-established identification levels
[10].



4.3. Consideration of analysis of samples batch

In the case where several samples are analyzed by batch, the 
same substances can be determined in different samples at various 
levels/scores, depending notably on the intensities obtained. For 
instance, a substance analyzed via target screening and present at a 
high intensity in a sample of this batch would provide a maximum 
score of 1.0, corresponding to a level 1 identification. The same 
substance with a lower intensity in a different sample could 
potentially end up with a reduced score for isotopic fit and frag-
mentation score (score down to 0.60 for example leading to a level 
3 rank). If there is sufficient evidence to indicate that it is indeed the 
same substance (notably by similar experimental retention times), 
then the latter case can be elevated to the level of the best scoring 
within the batch, here at level 1 instead of level 3. Overall, 
contemporary LC systems have robust retention time that should 
not shift more than 2.5% [49]. This means that for a chromato-
graphic run of 1200 s (20 min), the maximum acceptable RT shift is 
30 s. This consideration can be implemented with the requirement 
that the samples have been analyzed within the same batch and 
that LC system operates as expected. Given these restrictions, this 
operation can be automated.

5. Perspective: towards a harmonized identification scoring 
system for NTS

Machine learning approaches can help in creating reproducible 
decisions on the evidence surrounding the confidence of identifi-
cation. A higher degree of automation and the reduction of manual 
decisions will improve the reproducibility of NTS identification 
efforts and empower high throughput screening efforts. In this 
regard, the use of advanced models aimed to mimic/reproduce 
expert decisions will reduce the time need for a human to validate 
identification results, as the evidence can be presented clearly for 
quick confirmation. To ensure trust in machine driven data treat-
ment, robust validation processes coupled with specific QA/QC 
procedures should be developed on large sample datasets to ensure 
the validity of the results. Based on the experience gained in this 
study, conducted with the results obtained by four laboratories 
with wide expertise in NTA, a scoring system is proposed that 
provides a simplified and harmonized approach for presenting the 
evidence associated with an identification. It aims at improving 
reproducibility and facilitating the communication of the evidence 
associated with identification based on objective criteria.

The design of the scoring system is based on current data 
extraction capabilities, both in terms of algorithmic and instru-
mentation limits. The proposal described in the present paper can 
serve as a basis that can and should be further improved and 
adapted to new technological and conceptual opportunities. A 
representative example can be found in the use of CCS values (both 
experimental and predicted), which have proven effective in con-
firming structure identification [37]. The use of CCS could be 
introduced into the scheme presented here once its use becomes 
more widespread in the majority of NTS laboratories, and thus 
when sufficient data is available for implementing the approach as 
described here.

A wide use of the scoring system by different users following 
their specific approaches with large data sets will help define the 
important pieces of evidence more precisely and improve the 
prediction accuracy. The system described and assessed here on a 
wide range of selected cases will be implemented in the NORMAN 
DSFP. This will enable a large-scale community validation and will 
help determine whether the proposed system is ready to become a 
basis to support identification confidence communication in a 
reproducible and transparent manner.
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