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Abstract

The object of this study is to put forward uncertainty modeling associated with missing time

series data imputation in a predictive context. We propose three imputation methods associ-

ated with uncertainty modeling. These methods are evaluated on a COVID-19 dataset out

of which some values have been randomly removed. The dataset contains the numbers of

daily COVID-19 confirmed diagnoses (“new cases”) and daily deaths (“new deaths”)

recorded since the start of the pandemic up to July 2021. The considered task is to predict

the number of new deaths 7 days in advance. The more values are missing, the higher the

imputation impact is on the predictive performances. The Evidential K-Nearest Neighbors

(EKNN) algorithm is used for its ability to take into account labels uncertainty. Experiments

are provided to measure the benefits of the label uncertainty models. Results show the posi-

tive impact of uncertainty models on imputation performances, especially in a noisy context

where the number of missing values is high.

Author Summary

The methodological aim of this study was to take advantage of missing data chronology in

the imputation process in order to handle missing time series data. The practical goal of

COVID application was to study the link between the numbers of chronological COVID

confirmed cases and death. To achieve these goals we proposed 3 imputation methods of

missing time series data each of them associated with an uncertainty model. For the

COVID number of death prediction task, we set up a non-linear regression modeling for

the number of COVID deaths prediction from past deaths and confirmed cases data. This

led us to extend the Evidential K-Nearest Neighbor method to regression problems and to

assess the impact of uncertainty modeling within imputation process in regards to predic-

tive task. Finally, we showed the superiority of the time-EKNN (TEKNN) in terms of pre-

dictive performances compared to the Last Observation Carried Forward (LOCF) and

Centered Moving Average (CMA) methods. More globally, we showed the interest of
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modeling the uncertainty in the imputation process to better control the prediction error,

especially during relative stable periods.

1 Introduction

With an increasing number of machine learning applications, data availability is becoming

very important. Yet available datasets are often incomplete due to different measurement fail-

ures, especially when the data collection involves human participation. The treatment of miss-

ing values for predictive tasks has become an important issue giving rise to a wide range of

research. Many methods have been proposed to handle missing values (average, omission,

learning, etc.), one of the most popular being simply to exclude incomplete examples from the

learning set, due to the incapacity to deal with missing values of most predictive models [1, 2].

That type of treatment remains undesirable with limited amounts of available data or in a

chronological data structure.

The chosen method also depends on the nature of the missing values, which is often catego-

rized in Missing At Random (MAR) for missing values that are dependent on observed values,

Not Missing At Random (NMAR) missing values which depend on unobserved values and

Missing Completely At Random (MCAR) missing values which are independent of observed or

unobserved values [3, 4]. Those categories indicate why data are missing, an information to be

taken into account in the imputation method [5].

Moreover, in a time-series forecasting context, missing values introduce irregular time

stamps that contradict the most common hypothesis of standard time series methods. In terms

of uncertainty, missing values can be interpreted as total ignorance or complete imprecision

about the actual values. Some soft computing methods are designed to handle data uncertainty

by modeling its degree [6–8]. In such frameworks, ignorance corresponds to the highest level

of uncertainty and therefore missing values can be incorporated in models that take into

account the uncertainty level. In this study our aim is to predict COVID-19 daily deaths in an

artificially noised dataset out of which some labels (number of new deaths) have been ran-

domly removed, resulting in MCAR missing values since the missingness is not related to any

observed or unobserved values. The benefits of associating uncertainty models to imputation

methods are studied. We evaluate the predictive performance of the Evidential-K Nearest

Neighbors algorithm once missing data are imputed with and without uncertainty models (in

the latter case the imputed labels are considered as certain).

The structure of the dataset is adapted to time series forecasting. We propose a methodol-

ogy to handle the uncertainty inherent to missing values imputation methods. Some theories

allow representation of uncertainty in a broader way than classical probability theory. Missing

values uncertainty can be handled in different frameworks, e.g. fuzzy sets [9], possibilities dis-

tribution [10], probability sets [11], belief functions [12, 13]. We chose the belief functions

framework for its flexibility and relative simplicity and also because recognized machine learn-

ing algorithms based on that framework are available [14–17].

Beyond standard machine learning researches on missing data imputation methods [1, 2],

some soft computing imputation methods have been proposed [18–20]. In [21], a method is

proposed to categorize missing data and to remove noise with a kernel-based approach that

enables classification within the belief function framework. The purpose of the method is to

design an imputation strategy providing uncertainty resistance; however the method does not

handle the uncertainty at the predictive level. In [22] the authors propose a method to mini-

mize the classification errors due to uncertainty caused by missing values. Multiple precise
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missing values estimations are performed and the corresponding predictions are finally com-

bined in predictive belief functions. In the context of information retrieval, Jousselme et al.
proposed a missing values uncertainty representation [23]. Missing data are modeled as a

belief function defined over the variables spaces. The method shows good performance for

information retrieval task. As a matter of fact, none of those methods allows for the taking into

account the uncertainty associated with imputation at the predictive level. In this study, we

propose an approach to impute missing data in a chronological dataset and to model the

resulting uncertainty in the belief functions framework. Finally an evidential classification

model (EKNN) is extended to regression tasks in order to take into account the uncertainty

associated with the imputation process.

The rest of this paper is organized as follows: first we present the main results of this study

in Section 2, then we present our conclusion and perspectives in Section 3. All the details of

our approach are given in Section 4 where we briefly recall the basis of the belief functions

framework basis and the EKNN algorithm in the first subsection 4.1. After the presentation of

the time series forecasting problem in an incomplete data context in the following subsection

4.2, three missing value imputation methods are proposed in subsection 4.3. In subsection 4.4

we present the uncertainty models associated with the previously introduced imputation

methods; The uncertainty we are handling in this study is epistemic as we have no information

about the missing label values. The chosen predictive model is Evidential-K Nearest Neighbors

for its simplicity and its ability to deal with uncertain labels [14].

2 Results

First, we observe in Fig 1 that the three imputation methods are comparable in terms of perfor-

mance. The TEKNN approach seems to perform better than the LOCF and CMA methods

and its superiority grows as the noise level increases. Except for a small noise level of 0.1, the

TEKNN model seems to be the best imputation method.

On the chronological evaluation with a noise level of 0 (Fig 2), we observe that the EKNN

predictions with and without uncertainty models associated to label imputation blend

together. This observation was expected as the data are not noised, i.e. there is no uncertainty

associated with training labels. During the increasing and decreasing phases of the number of

deaths, the EKNN seems to perform better than the baseline approach (blue and green curves

Fig 1. Imputation errors.

https://doi.org/10.1371/journal.pdig.0000115.g001
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are closer to the purple one than the red curve during those periods). During the periods of rel-

ative stability when the evolution of the pandemic slows down, there seems to be no significant

differences between the considered approaches.

We note a small time shift between the real number of daily deaths and all predictive mod-

els, especially at the beginning of the wave. This is due to the fact that the model needs high

number of deaths in the past to be able to predict high values in the future.

We observe a phase shift at the start of the wave, due to the fact that, before, there is no

neighbor labelled with a high number of deaths, therefore the predicted values are under-esti-

mated until we have data in the training set presenting a high number of deaths. We also note

that the phase shift reduces thereafter.

On Fig 3, we observe that, with time-EKNN imputations, the “EKNN uncertain labels” and

the “EKNN” make predictions reaching quite similar performances with a slight superiority

for the “EKNN” (without uncertain model) during the beginning and the end phases of the

pandemic wave. During the relatively stable periods, the “EKNN” associated with an uncertain

model performs better than without imputation uncertain modelling.

The best results with a noise level of zero were obtained with K = 1, and q = 4. We see on

Fig 5 that thanks to the uncertainty model of the TEKNN imputation method we have a better

predictive performance up to a high noise level. The superiority of the standard EKNN after a

noise level of about 0.5 is due to the fact that a high missing value rate induces highly uncertain

neighborhoods and thus very uncertain predictions, a large mass being attributed to igno-

rance. The pignistic transformation applied to the mass function output of the EKNN distrib-

utes the mass on the O space in a uniform way on all the singletons; if this mass is too high, the

predictions tend to the center of the space. Except for K = 1, for all the other configurations K
= {10, 20} and q = {1, 2, . . ., 7} the use of uncertainty models allows us to have better predictive

performances (Figs 4, 5 and 6).

Fig 2. Predictive results on data imputed with time-EKNN imputation method, comparison with true labels:

K = 1: q = 4: v = 0.

https://doi.org/10.1371/journal.pdig.0000115.g002
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Fig 3. Predictive results on data imputed with time-EKNN imputation method, comparison with true labels:

K = 1: q = 3—v = 0.3.

https://doi.org/10.1371/journal.pdig.0000115.g003

Fig 4. Predictive performances relative to noise levels for data imputed with LOCF imputation method: K = 10:

z = 4.

https://doi.org/10.1371/journal.pdig.0000115.g004
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Fig 5. Predictive performances relative to noise levels for data imputed with time-EKNN imputation method:

K = 1: q = 4.

https://doi.org/10.1371/journal.pdig.0000115.g005

Fig 6. Predictive performances relative to noise levels for data imputed with CMA imputation method: K = 20:

q = 4.

https://doi.org/10.1371/journal.pdig.0000115.g006
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Redefining O at each iteration depending on the maximum number of deaths observed is a

conservative way to proceed, but it allows both models to predict any “reasonable” unobserved

value.

3 Conclusion

The aim of this study was to propose uncertainty models associated with missing chronological

data imputation methods. The objective was the prediction of the number of daily COVID 19

deaths at a prediction horizon of 7 days with an artificially noised dataset. We proposed three

imputation methods (LOCF,CMA,time-EKNN) that showed good imputation performances.

For our experiment we extended the EKNN methodology proposed in [14] to regression

problems. We were able to compare the predictive performances of the “EKNN” and the

“EKNN uncertain labels” with three imputation methods of comparable performances. The

experiment showed the benefit of uncertainty modeling for chronological imputed values

throughout several hyper-parameters configurations.

The use of incomplete past values (xt, yt)t=t−q,. . .,t as features leads to uncertain feature val-

ues. A logical continuation of this work could be to use other predictive models than the

EKNN, especially the ones that handle uncertain attributes during learning [17, 24, 25].

The problem of predicting COVID 19 daily deaths led us to a numerical regression prob-

lem, therefore the time based uncertainty model is not adapted to classification. It would be

interesting to extend it to classification in a categorical time series context. We also know from

health experts that the number of new COVID 19 cases is not a good indicator for predicting

deaths, therefore it would be interesting to weigh the importance of the attributes in the K
nearest neighbors computing [26].

Another perspective could be to compare the predictive performance we can get with soft

predictive models that handle missing values without any need of imputation.

Additionally, there are some algorithms like EKNN that use this framework. The theory of

belief functions permits us to have the enhancement of uncertainty modeling as a perspective,

for example by using imputation with intervals instead of precise values.

4 Materials and methods

4.1 Background

In this section we expose the basics of belief functions theory, also known as Dempster-Shafer

or evidence theory [12, 13] and we detail the Evidential K-Nearest Neighbors algorithm [14].

4.1.1 Belief functions. Let O = {ω1, ω2, . . ., ωH} be the so-called frame of discernment, i.e.
the universe of possible outcomes or hypotheses. The mass function m represents our degree

of knowledge about all subsets of O, i.e. about the powerset 2O of O. The elements A� O such

as m(A)> 0 are called focal elements and their weights sum to 1:
X

A�O

mðAÞ ¼ 1 ð1Þ

The quantity m(O) represents the degree of ignorance. From the mass function m, different

uncertainty measures can be computed such as the belief and plausibility functions defined in

Eqs (2) and (3) which can be interpreted as lower and upper “bounds of probability”.

BelðAÞ ¼
X

B�A

mðBÞ ð2Þ
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PlðAÞ ¼
X

B\A6¼�

mðBÞ ð3Þ

Different mass functions can represent different sources of information. At the decision

level, it may be necessary to combine them into a single mass function expressing all the

knowledge we can infer from these sources.

Mass combination

There are multiple methods of information fusion through mass combination rules [27,

28]. One of the most famous is the Dempster’s conjunctive rule of combination� [12] (see Eq

(4)):

ðm1 �m2ÞðAÞ ¼
1

1 � k

X

B\C¼A

m1ðBÞm2ðCÞ ð4Þ

where k ¼
P

B\C¼;
m1ðBÞm2ðCÞ is the degree of conflict between sources m1 and m2.

The main idea of this rule is to consider all sources reliable. After the combination, we get a

new mass function that can be used at the decision making level.

Decision making

In cases where the degree of ignorance m(O) is too important, some authors recommend

rejecting decision making [14]. Otherwise, the choice of uncertainty measure to make a deci-

sion presents a dilemma [29].

For instance, depending on the application goal and the chosen strategy in terms of conserva-

tism, any uncertainty measure lying between the belief (2) and the plausibility (3) measures can

be used. However, those measures are not additive, i.e. we do not have Bel(A [ B) 6¼ Bel(A) +

Bel(B) 8A, B 2 O such as A \ B = ; (same thing for the Pl function). For that reason many data

science tools are incompatible with those soft uncertainty measures since most of them have

been developed within the standard probability framework.

For pragmatic reasons many researchers choose to project the information content of mass

functions into the standard probability framework [14, 17]. The Transferable Belief Model was

proposed by Smets [29, 30] where the pignistic transformation allows to convert mass func-

tions into standard probability distributions. Despite known drawbacks [31], ignorance

degrees are projected into uniform distributions. The pignistic transform defined in Eq (5)

remains a natural solution for computing probability distributions from mass functions that

mainly relies on uniform ignorance modeling.

In the machine learning context many classifiers make soft predictions expressed in more

complex spaces than the standard probability one [14, 32]. When the learning data are uncer-

tain (evidential), in order to get handy predictions some authors [17] have proposed to maxi-

mize the evidential extension of the likelihood function [14] in order to estimate probability

distributions. When the evidential likelihood maximization is not straightforward, the Eviden-

tial Expectation Maximization (E2M) algorithm can be used. However the iterative nature of

the E2M algorithm can lead to high levels of complexity. For the sake of simplicity, the pignistic

transform is preferred in this study.

BetPðoÞ ¼
1

1 � mð;Þ

X

A�o

mðAÞ
jAj

8o 2 O ð5Þ
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4.1.2 Evidential KNearest Neighbors—EKNN. The EKNN extends K-Nearest Neighbors

algorithm to the belief functions framework [14] and is based on Dempster’s conjunctive rule

of combination. Let (x, y) = (xi, yi)i=1,. . .,n be a training set and O = {ω1, ω2, . . .., ωH} the frame

of discernment of the class label Y. Let xs be a new observation to classify. The first step is to

compute the distances between xs and all training examples xi to get the set of the K “nearest”

neighbors of xs. In the EKNN approach, each neighbor is considered as a source of informa-

tion. For each neighbor xi labelled with {ωl}, a mass function ms,i is computed:

ms;iðfolgÞ ¼ a0 � expð� g2
l � d

l
s;iÞ

ms;iðOÞ ¼ 1 � ms;iðfolgÞ

8
<

:
ð6Þ

The quantity ms,i({ωl}) represents the mass assigned to the label ωl by neighbor xi to xs. The

parameters α0, γl can be estimated with classical optimization procedure as gradient descent.

The parameter γl> 0 relates to the label ωl, in [14] the author recommends to set the parame-

ter α0 (which prevents dogmatic mass functions) to 0.95, ds,i stands for the euclidean distance

between xs and its neighbor xi and λ 2 {1, 2, 3, . . .} is a parameter that penalizes the farthest

neighbors.

Once all the masses ms,i have been computed, they are combined with Dempster’s rule of

combination into a final mass ms ¼ ms;i1
� :::�ms;iK

where ms;i1
; :::;ms;iK

represent the knowl-

edge associated with the K nearest neighbors of xs. Finally, decision can be made according to

ms, the approach chosen in [14] is to predict the label corresponding to the maximum of belief.

In the case of uncertain or imperfect labels modeled by mass functions, i.e. the learning set

is now ðxi;myi
Þi¼1;:::;n, for each neighbor xi we have a mass function myi

on the label variable Y.

In [14], the author proposes to discount the mass functions of all neighbors with the uncer-

tainty level of their labels. In Eq (6), the term corresponding to the uncertainty level of the

labels myi
is added which results in Eq (7).

ms;iðAÞ ¼ a0 � expð� g2
A � d

l
s;iÞ �myi

ðAÞ 8A � O

ms;iðOÞ ¼ 1 �
P

ms;iðAÞ

8
<

:
ð7Þ

In this study we deal with a regression problem since the number of COVID-19 daily deaths

is numerical. We therefore extend the original EKNN model, that was initially designed for

classification problems, to discrete regression tasks. To do so we removed all γl parameters

(defined relatively to categorical class labels) from Eqs (6) and (7), which results in Eqs (8) and

(9).

EKNN uncertainty model for regression:

precise labels :

ms;iðfolgÞ ¼ a0 � expð� dls;iÞ

ms;iðOÞ ¼ 1 � ms;iðfolgÞ

8
<

:
ð8Þ

uncertain labels :

ms;iðfolgÞ ¼ ða0 � expð� dls;iÞÞ �miðfolgÞ

ms;iðOÞ ¼ 1 � ms;iðfolgÞ

8
<

:
ð9Þ

The implementation of this extension of the EKNN algorithm to regression is available on

our github (https://github.com/lgi2p/evidential_imputation).

For decision making (i.e. prediction) we used the pignistic transform BetPs of ms in order to

predict the pignistic expectation.
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The predicted label of a new observation xs is:

EBetPs ½Y� ¼
X

o2O

BetPsðfogÞ � o ð10Þ

4.2 Formalism

In this section we present the formalism of both the regression problem and the missing value

imputation task.

4.2.1 Predictive problem. Let D = (xt, yt)t=0,. . .,T be a dataset where xt 2 OX � N and yt 2
OY � N are respectively the feature and label values at time t. We suppose that some label val-

ues are missing, i.e. some yt values are not known. The aim of the regression task is to approxi-

mate a function f mapping current and past features values to future labels:

yt ¼ f ðyt� h; :::; yt� ðhþqÞ; xt� h; :::; xt� ðhþqÞÞ ð11Þ

where h is the prediction horizon, q a number of past features and label values to consider.

This regression modelling implies that, at any timestamp t, the number of deaths yt can be pre-

dicted from the concatenation of the sets of previous number of death (yt−h, . . ., yt−(h+q)) and

of previous number of cases (xt−h, . . ., xt−(h+q)).

Predicting deaths from data restricted to past number of death and cases is not usual in

COVID forecasting works since some useful variables as the basic reproduction number R0,

hospital entries, exits and intensive care daily numbers, state health measures (confinement,

etc) are generally used for predicting future deaths. In our case we chose to restrict to deaths

and cases variables as most of the other previously stated variables are usually incomplete in

public datasets. Indeed, our work is based on the EKNN model which can deal with uncertain

labels but not uncertain features (in its initial form).

Moreover, restricting ourselves to only 2 types of data (deaths and cases) makes experi-

ments easier to run. Nevertheless, all this work can be easily extended to high-dimensionality

features provided they are not incomplete in dataset. It is worth mentioning that some work

has extended the EKNN model to uncertain features by computing distances between exam-

ples based on Jousselme distance which can be computed between belief function and thus

between uncertain features [24].

Since some of D’s values are missing, the imputation process has to occur upstream. In Eq

(10) past labels yt are inputs of the function as historic features. Therefore removing incom-

plete examples introduces irregular timestamps in the data, which is inconsistent with the reg-

ularity hypothesis of most time series treatments.

4.2.2 Imputation problem. Let us consider yp1
:::ypU the U known previous label values

with pU< . . .< p1 before a missing label yt and yn1
:::ynR with n1 < . . .< nR the next N known

values, U and R are hyper-parameters that have to be tuned.

In the example presented in Fig 7 we have P = 2 and N = 3.

The aim of the imputation process is to compute or impute a value ŷt for all missing yt.

4.3 Imputation methods

In this section we present three imputation methods to impute ŷt . The first one is the Last

Observation Carried Forward (LOCF) method that replaces missing values with the last

known value. The second one is the Centered Moving Average imputation (CMA) method

that takes into account the dynamical nature of the data, and imputes missing values from the

nearest future and past values. The last one is the “time-EKNN” (TEKNN) imputation method
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that applies the EKNN algorithm with a temporal distance to predict missing values, this

method also takes into account the dynamical nature of the data as CMA method. The three

imputation methods considered in this study are based on the use of those past and future

label values.

4.3.1 Last Observation Carried Forward (LOCF). Let yt be a missing label value and yp1

the last known value. The LOCF imputation is simply ŷt ¼ yp1
as illustrated in Fig 8.

4.3.2 Centered Moving Average (CMA) imputation. Here we preset a method taking

into account the dynamical nature of the data. It is based on the intuition that labels close in

time are likely to have close values. More simply, the idea of the CMA imputation method is to

impute the missing yt from the nearest known past and future labels (see Fig 9).

Fig 7. Chronological data imputation.

https://doi.org/10.1371/journal.pdig.0000115.g007

Fig 8. LOCF imputation.

https://doi.org/10.1371/journal.pdig.0000115.g008

Fig 9. CMA imputation.

https://doi.org/10.1371/journal.pdig.0000115.g009
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The past and future label values are averaged according to the duration between them and

the missing label yt. Let d
p
t ¼ jt � pj and d

n
t ¼ jt � nj be respectively the time shifts between

the time t of a missing label yt and the time of the previous and next known label values, we

have:

ŷt ¼
XU

u¼1

Simðt; puÞ � ypu þ
XR

r¼1

Simðt; nrÞ � ynr ð12Þ

with 8ðt;U;RÞ 2 f0; :::;Tg � N�2 :

•

Simðt; puÞ ¼
simðt; puÞ

XU

u¼1

simðt; puÞ þ
XR

r¼1

simðt; nrÞ
ð13Þ

•

simðt; puÞ ¼ 1 �
d
pu
t

XU

u¼1

d
pu
t þ

XR

r¼1

d
nr
t

ð14Þ

Eqs (13) and (14) define a normalized temporal similarity Sim(t, pu) between a measure-

ment time t and one of the previous measurement times pu. Those similarities are used to

weigh past label values in Eq (12). Note that these equations can be directly transposed to mea-

sure the similarity Sim(t, nr) between t and any next measurement time nr.
For the example of Fig 7, the CMA imputation with U = R = 2 leads to

ŷt ¼ 6

30
� yp2

þ 7

30
� yp1

þ 9

30
� yn1

þ 8

30
� yn2

4.3.3 Time-EKNN (TEKNN) imputation. The idea behind this imputation approach is

to use the EKNN regression model to predict the missing label values based on the complete

Fig 10. TEKNN imputation.

https://doi.org/10.1371/journal.pdig.0000115.g010
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examples, i.e. where label values are known, that are the closest in time. This method could be

seen as a de-centered extension of the CMA approach where the points used for imputation

are the closest regardless of their temporal disposition around the missing value (before and/or

after) as in Fig 10. For this model too, the nearest neighbors on time have more weights on the

imputed values ŷt (see Eq (8)).

Regardless of the considered method, by nature the imputation of missing data involves

some uncertainty associated with the imputed values. The next subsection proposes an uncer-

tainty model for imputed time series data within the belief function framework.

4.4 Uncertainty modeling for imputation methods

In this subsection we present the uncertainty models associated with the 3 imputation methods

described in the previous subsection. After uncertainty modeling, mass functions my
t are

assigned to each label yt whether its value is missing or not. For known label values, categorical

mass functions my
t ðfytgÞ ¼ 1 are assigned. The imputation methods associated with the uncer-

tainty model allow the conversion of a precise but incomplete (in terms of labels) dataset (x, y)

into a complete evidential dataset ðxt;m
y
t Þt¼1;...;T .

Because of their dynamical nature, the LOCF and CMA imputation methods are associated

with a time-based uncertainty model in the rest of this article. The idea behind this is that the

closer in time the values used for the imputation of the missing labels are, the less uncertain

the resulting imputed labels will be.

The uncertainty model of the time-EKNN imputation approach is the EKNN’s evidential

output.

4.5 Time based model

Once missing labels yt have been imputed with the LOCF or CMA method into precise com-

puted values ŷt , this paragraph describes the evidential uncertainty model associated with the

ŷt values. This modeling aims at discounting or softening these imputed label values according

to the duration without available data before and after them. This model is therefore based on

the time shifts d
p
t ¼ jt � pj and d

n
t ¼ jt � nj between the missing values and the closest known

ones. The larger those time shifts, the more uncertain the corresponding imputed label ŷt . Let

β 2 [0, 1] be an hyper-parameter controlling the uncertainty level, i.e. the decreasing speed of

masses mtðfŷtgÞ in regards to the time between the missing values and the closest ones. The

mass function associated with the CMA and LOCF imputation methods is:

mtðfŷtgÞ ¼ expð� b�minðdp1

t ; d
n1

t ÞÞ

mtðOÞ ¼ 1 � mtðfŷtgÞ

(

ð15Þ

This model was tested on several experimental set-ups to study its predictive performance.

The overall articulation between imputation and associated uncertainty models is described

in Fig 11.

In this section an experiment is presented on a public COVID-19 dataset in which some

labels (i.e. daily number of deaths) are noised, i.e. randomly removed and then imputed before

learning and testing phases. After describing the dataset, we give the details of our noise proce-

dure and the experimental set-up and finally we analyze the results.
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4.6 Dataset

On the website ourworldindata (https://ourworldindata.org/) we used the French dataset con-

taining the number of daily confirmed new cases (xt)t=1,. . .,T and new deaths (yt)t=1,. . .,T. Fig 12

shows the evolution of new cases and new deaths.

As the detection policy has evolved between the 2 pandemic waves, the link between new

cases and new deaths seems radically different during those 2 periods. As the number of daily

new cases was clearly underestimated during the first wave, we restricted the experiment to the

second wave. We finally had 367 complete daily observations for this dataset.

As there are no missing values in the dataset, we randomly removed or noised some label

values (i.e. new deaths). In the next subsection we give the details of our noise injection

procedure.

Fig 11. Evidential imputation scheme.

https://doi.org/10.1371/journal.pdig.0000115.g011

Fig 12. Evolution of new deaths and new cases.

https://doi.org/10.1371/journal.pdig.0000115.g012
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4.7 Noise procedure

The proportion v 2 [0, 1] of label values yt to remove is the input of the procedure. In order to

simulate plausible measurement errors, we removed labels yt by time frame. Having randomly

picked the frames centers at random, we generated reasonable frame sizes. The procedure is

iterative until the proportion of removed labels reaches v.

Algorithm 1: Noise procedure for label values removing.
Data: original dataset, v: noise level
Result: noised dataset containing v% of missing labels
removed  0
s = bv � Tc number of labels to remove;
while removed < s do
frame center uniform random generation c 2 [1:T];
frame size s uniform random generation in 2 {1, 2, 3};
computation of label indices to remove {c − s, . . ..c + s};
labels removal: fyt� s; . . . ; ytþsg ! f ^yt� s ; . . . ; ^ytþsg;
removed  removed + 1 + 2s;

end

4.8 Smoothing

Because of the weekly constraint in health policy, the raw COVID-19 data are usually saw-
tooth-shaped curves. This implies that smoothing method can and should be applied in order

to get values corresponding more to the reality than the very noisy raw ones. We chose to use a

moving median of 7 days (labels and features). Doing so, we avoided biases without creating

unreasonable values. Since smoothed data are usually very regular, imputing missing values on

smoothed data is not a real issue, we therefore decided to smooth our noised dataset after

imputation. All the implemented predictive models in our study were trained and tested on

smooth data because of their higher level of reliability compared to the sawtooth-shaped ones.

The whole process is represented in Fig 13

4.9 Experimental set-up

In this subsection we present the chronological set-up of our experiment and the considered

hyper-parameters spaces. Some hyper-parameters have been set a priori: R and U representing

the width of the CMA approach (12) were both fixed at 5 days. As hospital reorganization

involves strong administrative constraints incompatible with too short or too large horizon,

the considered prediction horizon h was 7 days. Finally, the uncertainty hyper-parameter of

the time-based uncertainty model (15) β was set at 0.05.

For the other hyper-parameters, several configurations were considered:

• noise level: v 2 {0, 0.1, . . ., 0.7}

Fig 13. Experimental process.

https://doi.org/10.1371/journal.pdig.0000115.g013
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• data historical length: q 2 {1, 2, . . ., 7}

• number of neighbors for the EKNN regressors: K 2 {1, 10, 20}

The data historical length q represents the number of past data (deaths and cases) represent-

ing each training example. The first 21 dates are set aside for training, the predictions yt are

then computed iteratively at each date t from all the past couples data (xt0, yt0)t0=t−h,. . .,t−(h+q). At

first iteration of the chronological evaluation, the 21 first days are used as training data in

order to predict the label value of the 21 + 7 = 28th day (with a prediction horizon of h = 7

days). After that, the training data are augmented by one date at each iteration, for example at

the second iteration we use the 22 first days to predict the label values of the 29th day.

Each complete chronological evaluation is repeated 50 times because of the randomness of

the noise procedure and predictions are averaged.

ðOYÞt ¼ f0; 1; . . . ;max
t0<t
ðyt0 Þ � 1:15g ð16Þ

Since OY must be defined before the prediction step in the regression of the EKNN we pro-

pose (see Eqs (8), (9) and (10)), we redefine it at each iteration according to Eq 16 by updat-

ing the maximum label value in the training data. We chose a safety margin of 15% in

regards to the real maximum number of deaths observed. As a baseline we considered the

moving average that predicts the number of deaths for the next week as the average of the

previous 2 weeks.

Two types of figures are presented. The chronological evaluations (see Figs 2 and 3) allow

us to visually evaluate the predictions of the regression for different noise levels according to

different imputation methods by comparing the predicted labels with the real ones. EKNN

regression models are evaluated without and with uncertain models (“EKNN” and “EKNN

uncertain labels”). In the former case, imputed training labels are considered certain whereas

in the latter case uncertain models (see Eqs (15) and (8)) allow the EKNN regression to take

into account data imputation uncertainty.

The noise level sensitivity of the complete evaluations is represented in Figs 6 and 5 where

the predictive performance is measured according to the noise level. The evaluation metric we

considered is the Root Median Squared Error (RMedSE). We chose it rather than the standard

Root Mean Square Error (RMSE) because of the high sensitivity of the mean operator to

extreme values which are quite usual in the COVID-19 data.

We evaluate the imputation methods by comparing the initial dataset with the imputed

ones in terms of RMSE in order to evaluate the imputation errors that were unlikely to contain

extreme values (see Fig 1).
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