Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Uncertain imputation for time-series forecasting: Application to COVID-19 daily mortality prediction

Abstract : The object of this study is to put forward uncertainty modeling associated with missing time series data imputation in a predictive context. We propose three imputation methods associated with uncertainty modeling. These methods are evaluated on a COVID-19 dataset out of which some values have been randomly removed. The dataset contains the numbers of daily COVID-19 confirmed diagnoses (“new cases”) and daily deaths (“new deaths”) recorded since the start of the pandemic up to July 2021. The considered task is to predict the number of new deaths 7 days in advance. The more values are missing, the higher the imputation impact is on the predictive performances. The Evidential K -Nearest Neighbors (E K NN) algorithm is used for its ability to take into account labels uncertainty. Experiments are provided to measure the benefits of the label uncertainty models. Results show the positive impact of uncertainty models on imputation performances, especially in a noisy context where the number of missing values is high.
Liste complète des métadonnées

https://hal.mines-ales.fr/hal-03830607
Contributeur : Administrateur IMT - Mines Alès Connectez-vous pour contacter le contributeur
Soumis le : mercredi 26 octobre 2022 - 14:21:40
Dernière modification le : vendredi 28 octobre 2022 - 03:33:35

Fichier

journal.pdig.0000115.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Rayane Elimam, Nicolas Sutton-Charani, Stéphane Perrey, Jacky Montmain. Uncertain imputation for time-series forecasting: Application to COVID-19 daily mortality prediction. PLOS Digital Health, 2022, 1 (10), pp.e0000115. ⟨10.1371/journal.pdig.0000115⟩. ⟨hal-03830607⟩

Partager

Métriques

Consultations de la notice

0

Téléchargements de fichiers

0