Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Assessing the potential of Qormino processor for embedded AI on board a CubeSat

Abstract : The launch of small satellites, CubeSats among others, is skyrocketing easing the development of Earth Observation missions and the implementation of Space applications. At the same time, Artificial Intelligence and deep neural networks algorithms are enjoying impressive success for their results and the diverse applications they enable. The idea of combining nanosatellite standards with Artificial Intelligence capabilities arises thus from a will to push the boundaries of Space systems further. Led by the Grenoble University Space Center (CSUG), the QlevEr Sat mission aims at embedding such an algorithm on board a CubeSat, to process data directly and send only the relevant results to the ground station. From the images taken with the Emerald sensor, forest/non-forest and cloud/non-cloud segmentation maps are inferred with the Teledyne Qormino® QLS1046-Space processor to monitor deforestation. A detailed benchmark of this processor is presented in the paper and confirms its suitability for the mission. The specifically designed pixel-wise classification algorithm leverages the Qormino® processor computing power to produce accurate high resolution binary maps.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal.mines-ales.fr/hal-03790759
Contributeur : Administrateur IMT - Mines Alès Connectez-vous pour contacter le contributeur
Soumis le : mercredi 28 septembre 2022 - 16:22:41
Dernière modification le : lundi 31 octobre 2022 - 16:39:46

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Citation

Paul Vandame, Alexis Noe, Jiri Cech, Lian Apostol, Colin Prieur, et al.. Assessing the potential of Qormino processor for embedded AI on board a CubeSat. IEEE Journal on Miniaturization for Air and Space Systems, 2022, 3 (3), pp.121 - 128. ⟨10.1109/JMASS.2022.3202438⟩. ⟨hal-03790759⟩

Partager

Métriques

Consultations de la notice

30