Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Poster de conférence

Invertebrates Detection with YOLOv5: Towards Study of Soil Organisms Using Deep Learning

Abstract : The investigation of the complicated underground life via automatic technique is in high demand in recent days. Using Convolutional Neural Network (CNN) to detect soil in- vertebrates is an interesting approach, although most studies on the topic have focused on other solutions. The creation of state-of-the-art technique through this work will be a significant step in soil ecology, bio-science and agriculture in effectively exploring the different types of invertebrates, their behaviors and interactions. In this paper, generating and annotating images containing seven classes of invertebrates is firstly presented. Then various automatic detections of the invertebrates using YOLOv5 algorithm on these images are performed and evaluated. Index Terms—Soil fauna, invertebrate detection, small object detection, invertebrate dataset, YOLOv5, cluttered background
Type de document :
Poster de conférence
Liste complète des métadonnées
Contributeur : Administrateur IMT - Mines Alès Connectez-vous pour contacter le contributeur
Soumis le : mardi 4 octobre 2022 - 09:48:59
Dernière modification le : mardi 15 novembre 2022 - 10:28:46


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-03790169, version 1


Emma Pruvost, Hadrien Tulet, Etienne Delort, Ghulam-Sakhi Shokouh, Philippe Montesinos, et al.. Invertebrates Detection with YOLOv5: Towards Study of Soil Organisms Using Deep Learning. EUVIP 2022 - The 10th European Workshop on Visual Information Processing, Sep 2022, Lisbone, Portugal. , 2022. ⟨hal-03790169⟩



Consultations de la notice


Téléchargements de fichiers