Skip to Main content Skip to Navigation
Journal articles

Fire behaviour of hemp, clay and gypsum-based light biobased concretes and renders

Abstract : Greenhouse gas emissions from cement manufacturing account for about 8 to 10 percent of total CO2 emissions worldwide. To reduce these emissions, researchers are developing new concrete manufacturing techniques and processes to reduce high energy consumption and environmental impacts. Biobased concretes are eco-friendly insulating materials for building industry that can respond to this problem. However, there is a lack of knowledge regarding how these plant-based fillers ignite and contribute to heat release in case of fire. In this work, the fire behaviour of a series of hemp-based earth and/or gypsum concretes covering a large range of densities (180–1500 kg/m3) is investigated using the cone calorimeter at an incident heat flux of 50 kW/m2. The fire performances are mainly monitored by the thermal inertia of the materials. Only the lightest concretes ignite with a density threshold for ignition occurrence around 500 kg/m3. For a density of 261 kg/m3, the critical heat flux of an earth-hemp concrete was found to be close to 27 kW/m2. The flaming period remains very short in all cases.
Complete list of metadata
Contributor : Administrateur IMT - Mines Alès Connect in order to contact the contributor
Submitted on : Wednesday, March 30, 2022 - 6:08:48 PM
Last modification on : Wednesday, July 13, 2022 - 5:02:31 PM


 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2022-09-29

Please log in to resquest access to the document



Rodolphe Sonnier, Oumaima Belkhane, Laurent Ferry, Laurent Aprin, Pierre Delot, et al.. Fire behaviour of hemp, clay and gypsum-based light biobased concretes and renders. Construction and Building Materials, Elsevier, 2022, 331, pp.127230. ⟨10.1016/j.conbuildmat.2022.127230⟩. ⟨hal-03624704⟩



Record views