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Abstract. In this paper we propose a novel local image descriptor called
RSD-HoG. For each pixel in a given support region around a key-point,
we extract the rotation signal descriptor(RSD) by spinning a filter made
of oriented anisotropic half-gaussian derivative convolution kernel. The
obtained signal has extremums at different orientations of the filter.
These characteristics are combined with a HoG technique, to obtain a
novel descriptor RSD-HoG. The obtained descriptor has rich, discrim-
inative set of local information related to the curvature of the image
surface. With these rich set of features, our descriptor finds applications
in various branches of computer vision. For evaluation, we have used
the standard Oxford data set which has rotation, brightness, illumina-
tion, compression and viewpoint changes. Extensive experiments on these
images demonstrates that our approach performs better than many state
of the art descriptors such as SIFT, GLOH, DAISY and PCA-SIFT.

Keywords: Image descriptor - Half gaussian kernel - Feature matching -
Rotation signal descriptor - HoG

1 Introduction

In computer vision, problems related to object matching, tracking, panorama
generation, image classification, structure and motion estimation are effectively
addressed by the popular approach of image representation by a set of local image
descriptors. The main purpose of local image descriptor is to capture the geometry
of a support region around a key-point. In addition to this, the image descriptor
should be invariant to certain image transformations such as rotation, brightness,
blurring and scale changes. Scanning through the com-puter vision literature, one
can come across the term image matching pipeline. The image matching pipeline
has four stages. In the first stage, key-points or regions are selected using the
popular detectors such as LoG[2], DoG [3] or Har-ris Affine [4]. This is followed by
the extraction of features or feature description from the support region around
the key-point. Next, various post processing



applied. The final block involves matching the descriptor using different distance
measures such as euclidean distance[3], hamming distance[6], Earth Mover’s
Distance(EMD)(7].

We are mainly interested in the second stage of the above described pipeline.
The popular approach to extract features from a support region is to use the
Histogram of Gradients(HoG)[8]. SIFT[3] effectively makes use of HoG to gen-
erate a descriptor. In PCA-SIFT[1] the dimension of the SIFT descriptor is
reduced by applying the PCA technique. GLOH[9] and DAISY[10] use radial and
daisy binning strategies respectively to improve on the existing SIFT descrip-
tor. The standard version of SURF[11] achieves speed-up over SIFT by using
Haar wavelets. MROGH[12] and MRRID[12] improve on the rotational invari-
ance aspect by pooling local features based on their intensity orders in multiple
support regions. In RIFF[13], radial and tangential components are extracted
from the support region to form the descriptor. CSLBP[14] and MRRID[12]
use local binary patterns to encode the image structure in the support region.
A detailed evaluation of these descriptors can be found in[25].

There is a line of research oriented towards object recognition and image
matching on camera-enabled mobile devices (e.g. phones and tablets). Limited
computational power and storage space on these devices has enabled the emer-
gence of binary descriptors. The main idea behind binary descriptor is that each
bit is independent and Hamming distance can be used as similarity measure.
Some of the most popular binary descriptors are BRIEF[6], ORB[15], BRISK[16]
and FREAK][17]. A detailed evaluation of these descriptors can be found in[18].

Filter responses has been used in abundance for image description. Schmid
and Mohr[19] use differential invariant responses to compute new local image
descriptors. Differential invariant responses are obtained from a combination
of Gaussian derivatives of different orders, which are invariant to 2-dimensional
rigid transformations. Larsen et al.[20] follow a new approach for the construction
of an image descriptor based on local k-jet, which uses filter bank responses
for feature description. Palomares et al.[21] have come up with a local image
descriptor issued from a filtering stage made of oriented anisotropic half-gaussian
smoothing convolution kernels. In their work the authors use euclidean invariance
is achieved by FFT correlation between the two signatures/descriptors. Moderate
deformation invariance is achieved using Dynamic Time Warping (DTW).

The contributions of this paper include a new approach for descriptor gen-
eration. We embed the response of an anisotropic half Gaussian kernel in a
HoG framework. For each pixel in the support region a rotation signal descrip-
tor(RSD) is extracted by spinning a filter made of oriented anisotropic half-
Gaussian derivative convolution kernel. We select two orientations at which a
global maxima and a global minima occurs. Thus, for each pixel in the support
region we have two orientations and a magnitude. These orientations are binned
by weighing them with the magnitude.



2 Methodology

2.1 Image-Processing

Isotropic Gaussian filters Fig.1(a), Fig.1(b) are widely used for smoothing
images. But, it is well known that this type of filters blur the image features.
Gaussian anisotropic filtering overcome this by preserving the features along a
particular direction. Compared to isotropic filters, anisotropic filters are elon-
gated along one of the directions. Fig.1(c) and Fig.1(d) shows smoothing and
derivative anisotropic filters respectively. We use a filter made of anisotropic half
Gaussian derivative kernel as in [22] [23]. An anisotropic half-Gaussian deriva-
tive filter 1(f) is designed with a Gaussian half-smoothing filter in Y direction
and a derivative Gaussian filter in X direction. The filtering in the Y direction
acts as a causal integration, as the filtering in X direction is a full derivative.
Then, rotating the filter around pixels generates a description around the pixels.
Applying such filters on an edge point will produce a minima and a maxima
in two directions. On a straight line edge these two direction are exactly oppo-
site (180°), but generally the difference of angles reflects the curvature at edge

points.
) (c) (@) (e) ®

Fig. 1. (a) Isotropic smoothing filter. (b) Isotropic derivative filter. (¢) Anisotropic
smoothing filter. (d) Anisotropic derivative filter. (e) Half anisotropic smoothing filter.
(f) Half anisotropic derivative filter.
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As shown in Fig 2(a). at pixel (z,y), a derivative kernel is applied to obtain
a derivative information ¢(z,y,0) in a function of orientation 6 € [0;360°] :
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Where Iy corresponds to a rotated image of orientation #, C' is a normalization
coefficient, (x,y) are pixel coordinates, and (u, A) the standard deviation of the
anisotropic Gaussian kernel. Only the causal part of this filter along the Y axis
is used. This is obtained by cutting the kernel in the middle, in an operation
that corresponds to the Heaviside function H. As in [23] we have chosen to rotate
the image instead of the filter, there by reducing the algorithmic complexity by
making use of a recursive Gaussian filter [24].



2.2 Rotational Signal Descriptor(RSD)

RSD is obtained by rotating the above described filter around a key-point. Fig.
2(c) shows a sample RSD obtained by applying the Gaussian derivative half filter
at the the pixel location (z,,y,) in steps of 2°. We compute the gradient ||VI||
and the two angles for the key-point/pixel at location (zp,y,) by considering
the global extrema of the function Q(zp, yp, ). The two angles 6; and 6 define
a curve crossing the pixel(an incoming and outgoing direction). Two of these
global extrema are combined to maximize ||[VI|], i.e :

IVI||= max Q(zp,yp,0) — min Q(zp,yp,0)

06[0’3600[ 9€[0,360°[

61 = argmax (Q(zp,Yp,0)) (2)
6€[0,360°]

0y = argmin (Q(xp,Yp,0))
0€[0,360°]

We can spin an anisotropic half Gaussian derivative kernel at a key-point and
the resulting response(RSD) can be considered as a descriptor. But, RSD alone
gives a weak description, as it fails to capture the geometry around the key-point.
This is the main motivation for combining the HoG technique with RSD.
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Fig.2. (a) A thin rotating Gaussian derivative half-filter. (b) Half Gaussian kernel
applied to a keypoint xp,yp. (¢) Extrema of a function Q(xp,yp,0). p =10, A =1 and
Af = 2°. Note that the initial orientation of the filter is vertical, upwardly directed
and steerable clockwise.

2.3 Pre-Processing

Prior to feature extraction, the image is smoothed with a Gaussian filter. Then,
key-points(regions) need to be localized. We have used Harris affine feature detec-
tor. It can also be noted that any of the existing feature detector can be used for
this step. As in Fig. 3, we first extract image patches surrounding the key-points.
Then, depending on the key-point attributes such as scale and orientations, we
rotate the patch by its orientation. This is followed by scale normalizing the
oriented patch to a fixed size of 41x41. More details about the process for patch
extraction and normalization can be found in [4].



2.4 RSD-HoG Construction

The framework of the RSD-HOG extraction is illustrated in Fig. 3. On each pixel
of the normalized patch, we apply the rotating semi Gaussian filter to obtain
the RSD. From this RSD, we extract two angles and a magnitude for each pixel
as explained above. Then we bin the two angles separately as in Eq.3 and Eq.4.
The image patch is divided in to 16 blocks. Since the image patch is of size
41x41, most of the blocks are of size 10x10 ( blocks on the extreme right and
extreme bottom are of size 11x11 ). Each of these block contributes 8 bins to
the final descriptor. We fuse the two intermediate descriptors to form the final
descriptor as in Eq.5. The intermediate descriptors in Eq.3 and Eq.4 alone can
be used as descriptors. But, fusing these two descriptors as in Eq.5 results in
a more robust description. The performance of two intermediate descriptor and
the final descriptor for the boat dataset(Rotation changes) can be seen in the
first row of Fig.4.

RSD — HoG — Thetal = {elbinl ’ 01bin2’ 91bm3 ) 01bm4 """ olbin128} (3)

RSD — HoG — Theta2 = {02bm1 ) 92bm2’ 92bm3 ’ 025m4 """ 02bin128} (4)
RSD — HoG = {elbinl ) 01bin2’ "'elbmmsv 92bm1 ) 02bm2’ "'02bin128} (5)

3 Experiments, Discussions and Results

3.1 Dataset and Evaluation

We evaluate and compare the performance of our descriptor against the state of
the art descriptors on the standard dataset using the standard protocol provided

-

63

R
i
7

Fig. 3. Affine region is normalized to a square of size 41x41. On each pixel of the patch,
RSD is generated and the two angles 6; and 602 are extracted. These angles are binned
separately.



by Oxford group. The binaries and dataset are obtained from website linked to
[25] (http://www.robots.ox.ac.uk/~vegg/research/affine/) . The dataset used in
our experiments has different geometric and photometric transformations such
as change of scale, image rotation, viewpoint change, image blur, JPEG com-
pression and illumination change. For each type of image transformation there
is a set of six images with established ground truth homographies.

Recall versus precision curves as proposed by [25] are used to evaluate our
descriptor. This is based on the number of correspondences, correct matches and
false matches obtained for an image pair. Number of correspondences is defined
as the number of pairs of features whose euclidean distance is below a certain
threshold. We vary the threshold in steps to obtain the recall vs precision curves.
A correct match is recorded when the pair of features with the smallest euclidean
distance coincides with the pair of points/regions matched by the ground-truth.
As in Eq.6, recall is defined as the total number of correctly matched regions
over the number of corresponding regions between two images of the same scene.
From Eq.7, 1-precision is represented by the number of false matches relative to
the total number of matches.

Total number of correct matches
recall = (6)
Number of correspondences

1 . Number of false matches (M)
-precision =
P Number of correct matches + Number of false matches

3.2 Parameter Selection

Our descriptor has 4 different parameters that are tabulated in the table 1. The
rotation step of the filter is fixed to 5°. Increasing the rotation step results in
loss of information. We have fixed the number of bins to 8 per block, resulting
in a 8% 16 = 128 bins for 16 blocks. Increasing the number of bins results in the
same performance but, increases the dimensionality of the descriptor. All the
parameters are chosen empirically.

Table 1. Parameters

filter Height (p) |filter Width (A)|Rotation step (A6)|No of BINS
6 1 5° 8

3.3 Descriptor Performance

The performance of RSD-HoG is compared against SIFT-OXFORD, SIFT-
PATCH, GLOH, DAISY and PCA-SIFT. For SIFT-OXFORD, PCA-SIFT and
GLOH the descriptors are extracted from the binaries provided by Oxford group
(http://www.robots.ox.ac.uk/~vgg/research/affine/)[25]. DAISY descriptor is


(http://www.robots.ox.ac.uk/~vgg/research/affine/)
(http://www.robots.ox.ac.uk/~vgg/research/affine/)
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Fig. 4. Recall vs Precision curves for Oxford dataset using nearest neighbour matching
method



extracted from the code provided by [10]. SIFT-PATCH is the SIFT descrip-
tor applied on a patch using the VLFEAT library [26]. Due to lack of space we
restrict ourself to image pairs(1-3),(1-4) and (1-5).

1. Rotation changes.
First, we compare the performance of RSD — HoG (Eq.5) with the interme-
diate descriptors RSD — HOG — Thetal (Eq.3)and RSD — HOG — Theta?2
(Eq.4). From the graphs in the first row of Fig.4 it is clear that RSD — HoG
performs better than the two intermediate descriptors. This is same for all
the images with different transformations. Due to lack of space we restrict
ourselves to graphs for rotational changes. When RSD — HOG is compared
with other descriptors it can be seen that our descriptor performs better
than other descriptors. This can be seen in the 2nd row of Fig.4.

2. Viewpoint and Blur changes.
Graphs in the third row of Fig.4 represent Recall vs Precision curves for the
Viewpoint changes. It can be seen that for the first 2 cases (1-2),(1-3)and
(1-4) RSD — HoG performs similar to other descriptors. For the final case
the performance of RSD — HoG deteriorates. This is a challenging sequence
and all the other descriptors perform badly. Graphs in the fourth row of
Fig.4 represent Recall vs Precision curves for the Blur changes. From the
graphs it is clear that RSD — HoG outperforms other descriptors.

3. Brightness and Compression changes.
Based on graphs in the fifth row of Fig.4, we conclude that the performance
of RSD — HoG is superior to the performance of other descriptors when it
comes to handling Brightness variations. Similarly, graphs in the last row of
Fig.4 illustrate the dominance of our descriptor for compression variations.

4 Conclusion

This paper proposes a new image descriptor called RSD-HoG. It also proposes
a new approach to construct the descriptor by interlacing the bins of the two
intermediate descriptors. On the standard dataset provided by the Oxford group,
RSD-HoG outperforms other state of the art descriptors. Currently, high com-
plexity and the dimension of the descriptor are a major drawback. In the future
we would like to reduce both the complexity and dimension of our descriptor.
Here, we have used a fixed set of parameters for the anisotropic half Gaus-
sian kernel. In the future, we would like to experiment with other variations of
the anisotropic half Gaussian kernel. We would also like to focus on the real
time implementation of our descriptor using parallel programming techniques.
Another direction of our future work would be to test our approach on tasks
related to object detection, writer classification and shape retrieval.
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