A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian Filters - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian Filters

(1) , (1) , (1) , (1)
1

Résumé

Among the common image structures, line feature is the extensively used geometric structure for various image processing applications, including the analysis of biomedical image with blood vessels highlighting, graph-shape structures, cracks detection, satellite images or remote sensing data. Multi-scale processing of line feature is essentially required for the extraction of more relevant information or line structures of heterogeneous widths. In this paper, a multi-scale filtering-based line detection approach using second-order semi-Gaussian anisotropic kernel is proposed. Meanwhile, a strategy is introduced to calculate the strength of the observed line feature across the different scales. The proposed technique is evaluated on real images by using their tied hand-labeled images. Finally, the experimental results and comparison of images containing different line feature widths with state-of-the-art techniques have sufficiently supported the effectiveness of our technique.
Fichier principal
Vignette du fichier
Magnier2021Multi (1).pdf (2.8 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03413881 , version 1 (24-11-2021)

Identifiants

Citer

Baptiste Magnier, Ghulam-Sakhi Shokouh, Binbin Xu, Philippe Montesinos. A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian Filters. CAIP 2021 - The 19th International Conference on Computer Analysis of Images and Patterns, Sep 2021, Virtual Conference, France. pp.98-108, ⟨10.1007/978-3-030-89131-2_9⟩. ⟨hal-03413881⟩
66 Consultations
66 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More