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Abstract. Flash floods frequently hit Southern France and cause heavy damages 
and fatalities. To enhance persons and goods safety, official flood forecasting 
services in France need accurate information and efficient models to optimize 
their decisions and policy in crisis management. Their forecasting is a serious 
challenge as heavy rainfalls that cause such floods are very heterogeneous in time 
and space. Such phenomena are typically nonlinear and more complex than 
classical flood events. This analysis had led to consider complementary 
alternatives to enhance the management of such situations. For decades, artificial 
neural networks have been proved very efficient to model nonlinear phenomena, 
particularly rainfall-discharge relations in various types of basins. They are 
applied in this study with two main goals: first modelling flash floods on the 
Gardon de Mialet basin (Southern France); second, extract internal information 
from the model by using the KnoX: knowledge extraction method to provide new 
ways to improve models. The first analysis shows that the kind of nonlinear 
predictor strongly influences the representation of information: e.g. the main 
influent variable (rainfall) is more important in the recurrent and static models 
than in the feed-forward one. For understanding "long-term" flash floods genesis, 
recurrent and static models appear thus as better candidates, despite their lower 
performance. Besides, the distribution of weights linking the exogenous variables 
to the first layer of neurons is consistent with the physical considerations about 
spatial distribution of rainfall and response time of the hydrological system. 

Keywords: Neural networks, flash floods, knowledge extraction, deep learning. 

1 Introduction 

In the Mediterranean regions, flash floods due to heavy rainfalls frequently occur and 
cause numerous fatalities and costly damages. During the last few years, Southern 
France has been particularly exposed to these catastrophic events. In such cases, in only 
one event, there can be more than 20 fatalities, and damages that can reach more than 
one billion euros, in only one event [1]. Facing these issues, authorities need reliable 
forecasts for early warning purposes. Unfortunately, both the short-term rainfall 
forecasts and the processes leading to the discharge response remain poorly known at 
the space and time scales required. It is thus difficult to provide forecasts using the 
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traditional coupling between a meteorological model and a physically based 
hydrological model. 

Artificial neural networks therefore appear as an alternative paradigm as they are 
able to provide forecasts of an output (discharge) without making any other hypothesis 
on the system than the causality between rainfall and discharge. Artificial neural 
networks have been applied in a wide variety of domains, as they are essentially based 
on data and training [2]. They appear as particularly suitable for identifying the 
generating processes in hydrological time series because of their ability to model 
nonlinear dynamic systems [3,4]. However, due to their statistical origin, it is difficult 
to associate meaning to their internal parameters, and they are rightly considered as 
black-box models. For this reason and to enhance the understanding of the behavior of 
both the model and the physical processes, several works have been done to bring more 
transparency in the operating mode and introduced concepts of gray-box and 
transparent-box models [5, 6]. Some other works have been conducted to make neural 
networks models more hydrologically meaningful [6, 7, 8].  

2 Material and methods 

2.1 Study area: location and general description 

The Gardon de Mialet basin covers 220 sq.km in Southern France. It is part of the 
Cévennes range, which is known as a preferential location for the well-known 
meteorological phenomenon named “cevenols episodes” (Fig. 1). These episodes 
consist in short duration (less than 2 days) very heavy rainfall events. 

The elevation of the Gardon de Mialet basin ranges from 150 m.a.s.l. to 1170 m.a.s.l. 
and its mean slope is about 33 %. As for the most of basins of the Cévennes, these 
characteristics lead to limited deep infiltration or deep underground flow, and thus to a 
high drainage density. Its response time is relatively short: between 2-4 hours [4]. The 
area is dominated by a metamorphic formation with 95 % of mica-schist and gneiss, 
which leads to a poorly porous and impermeable rocky sub-soil. The land use is almost 
homogeneous while covered by natural vegetation (chestnut trees, conifers, mixed 
forest and bush) for 92 %. The rest is shared between rocks and urban areas. 

Typically, in Mediterranean regions, heavy rainfalls sometimes exceed 500 mm in 
only 24 h, to be compared to the 600 mm that fall on Paris annually. They are mainly 
produced by convective events, triggered either by relief, by a wind convergence, or by 
both. For example, in September 2002, the Gard (France) department has registered 
687 mm of rainfall in 24h with 137 mm in only one hour at Anduze (a few kilometers 
distant from Mialet). 
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Fig. 1.The study area (Artigue, 2012) 

2.2 Database 

The database used in this study is essentially compounded with hourly observations 
from 1992 to 2002, and 5 minutes time-step observations from 2002 to 2008, on three 
rain gauges and one hydrometric station at the outlet at Mialet (Fig. 1). From upstream 
to downstream, these stations are: BDC (Barre des Cévennes), SRDT (Saint-Roman de 
Tousque) and Mialet which coincides with the discharge station. They are all managed 
by the local Flood Forecasting Service (SPC Grand Delta). 58 events were extracted at 
30 minutes time-step (based on rainfall events having at least 100 mm accumulation in 
48 h on any of the rain gauges). Data description is synthetized in Tables 1 & 2. 

Table 1. Data description 

 Rainfall (mm) Discharge  
BDC SRDT Mialet (m3s-1) (m3s-1km-2) 

Maximum (30 min) 33.3 41.8 62.0 819.3 3.72 
Median (30 min) 0.3 0.3 0.2 29.3 0.13 
Moy 1.0 1.3 1.2 43.4 0.20 
Min 0 0 0 2.13 0.010 

Table 2. Test event description 

Event Date Duration 
Maximum of 

discharge  
(m3s-1) 

Mean 
discharge 

(m3s-1) 

Cumulative 
rainfall 
(mm) 

Intensity 
(mm.h-1) 

13 Sept. 00 26 h 454 70 230 40 
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2.3 Artificial neural networks 

As widely explained in [9, 4], three kinds of neural networks models have been used in 
this study: a static model, a recurrent model and a feedforward model. The same 
references should provide the reader guidance about the implemented methods for the 
control of the bias-variance dilemma and of overtraining (early stopping, cross-
validation, ensemble model) and about the performance criteria used (R2 criterion and 
peak analysis). Only the part about knowledge extraction is reminded here, due to its 
important role in the study. 

2.4 Extracting information: KnoX method 

First, the KnoX method is applied to a specific architecture, based on multilayer 
perceptron, which represents the behavior of the physical process, in order to constrain 
the model to represent this physical behavior [7]. As the rain is essentially added in the 
first step of the rainfall-runoff transformation, we have introduced one layer of linear 
neurons implementing the addition of rains fallen at different time-steps (delayed rains). 
This supplementary layer is called "i" (linear hidden neurons) in Fig 2. The second 
hidden layer (non-linear hidden layer) calculates a non-linear combination of the 
"locally added" rains. 
The KnoX method [7, 8, 9] allows calculating a "simplified" contribution of each input 
to the model output. This method is described for the general deep model (two hidden 
layers) shown in Fig. 2. The principle of the method is that a contribution of an 
individual input variable can be quantified, after training, by the product of the 
parameter's chain linking this input to the output. The considered parameters are (i) 
“normalized” by the sum of the parameters linked to the same targeted neuron, and (ii) 
made independent from the model initialization by calculating the median of absolute 
values of their values for 20 different random initializations. This regularized value is 
noted as �𝐶𝐶𝑖𝑖𝑖𝑖�  

𝑀𝑀  for the parameter Cij linking the neuron (or input) j to the neuron i.  
As the value of the sigmoid is not taken into account in eq. 2, this contribution can 

be seen as the contribution of the "linearized" model. Nevertheless the model is really 
a non-linear model. 

Regarding the model shown in Fig. 2, it appears that inputs are applied in several 
groups, for example A, B,… Each group corresponds to a variable, for example the rain 
gauge of Mialet, or the previous discharge (D). As the output depends dynamically on 
these inputs, following a complex and unknown multi-scale relation, these inputs are 
applied at several time-step in order to allow the model to estimate these multi-scale 
relations. Thus, the contribution (PA) of the grouped inputs A (including several delayed 
inputs) is the sum of the contributions of each individual delayed input of the group A. 
The equation calculating the contribution for just one element (the value for the delay 
j) of the input A is provided in eq. (1). Unhopefully, it is not possible to explain more 
comprehensively the method in the short present paper, so we suggest to the reader to 
refer to [7, 8]. 
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𝑃𝑃𝐴𝐴(𝑖𝑖) =
�𝐶𝐶𝑖𝑖𝑖𝑖� 

𝑀𝑀

∑ �𝐶𝐶𝑖𝑖𝑖𝑖� 
𝑀𝑀𝑛𝑛𝐴𝐴

𝑖𝑖=1

∑ � |𝐶𝐶ℎ𝑖𝑖| 
𝑀𝑀

∑ |𝐶𝐶ℎ𝑖𝑖| 𝑀𝑀 +∑ |𝐶𝐶ℎ𝑑𝑑| 𝑀𝑀 +𝑏𝑏ℎ
𝑛𝑛𝑑𝑑
𝑑𝑑=1

𝑛𝑛𝑖𝑖
𝑖𝑖=1

� � |𝐶𝐶𝑜𝑜ℎ| 
𝑀𝑀

∑ |𝐶𝐶𝑜𝑜ℎ| 𝑀𝑀 +𝑐𝑐𝑜𝑜𝐻𝐻
ℎ=1

� 𝐻𝐻
ℎ=1 , (1) 

and: 𝑃𝑃𝐴𝐴 =  ∑ (𝑃𝑃𝐴𝐴(𝑖𝑖))𝑛𝑛𝐴𝐴
𝑖𝑖=1 ,  (2) 

Where the categories of parameters Cij, Chi, Coh, Chd are shown on Fig. 2; nA is the 
number of inputs in the group A; H the number of hidden non-linear neurons; nj the 
number of hidden linear neurons (first hidden layer); nd is the number of delayed inputs 
of the group D; bh is the bias inputted to the non-linear hidden input and co is the bias 
parameter inputted to the output neuron. 

 

3 Results 

3.1 Choice of variables 

Starting from previous works of [4], we chose the following exogenous variables: (i) 
Barre des Cevennes rain gauge, Saint-Roman de Tousque rain gauge and Mialet rain 
gauge, each one with a sliding window length {k, … k-nr+1}, (ii) the sum of the mean 
rain (mean calculated over the three gauges) fallen from the beginning of the event. Of 
course, a bias input is used; several values were tried in order to evaluate the sensitivity 
of the KnoX method to its value. 
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Depending on the kind of considered model, states variables can be added: previous 
observed discharges for the feed-forward model, and previous estimated discharges fir 
the recurrent one. The static model only takes rains and mean rains into account [9]. 

3.2 Model selection 

Model selection is a key issue of machine learning. The goal is to define accurately the 
architecture of the model managing the bias-variance tradeoff. This was done in this 
following work [10] using cross correlation, cross validation, and early stopping using 
the following rules.  
- Hyper-parameters are adjusted for each one of the three kinds of model (static, feed-
forward, recurrent): input sliding windows width (nA, nB, nC, nD), number of non-linear 
hidden neurons (h).  
- Widths of the rainfall windows applied to the model, {nA, nB, nC}, are selected thanks 
to cross correlation [11]. Initially proposed by [12], [13] generalizes the application of 
cross correlation in hydrology. The used equation in this study is presented in eq. (3).  

𝐶𝐶𝑥𝑥𝑥𝑥(𝑘𝑘) =  𝐶𝐶𝐶𝐶𝐶𝐶 (𝑥𝑥𝑖𝑖,𝑥𝑥𝑖𝑖+𝑘𝑘)
𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦

=
1
𝑛𝑛∑ (𝑥𝑥𝑖𝑖− �̅�𝑥)(𝑥𝑥𝑖𝑖+𝑘𝑘− 𝑥𝑥�)𝑛𝑛−𝑘𝑘

𝑖𝑖=1

𝜎𝜎𝑥𝑥 𝜎𝜎𝑦𝑦
                        (3) 

With 𝑘𝑘 ∈ ℕ+; the truncation 𝑚𝑚, which is the maximum value of k, is recommended 
to be m=n/3. [12] indicated that two hydrological variables can be considered as 
statistically independent if their cross-correlation is superior to 0.2. Starting from this 
work, we selected three possible lengths for the sliding windows of rain gauges inputs: 
(i) the number of time-step between 𝐶𝐶𝑥𝑥𝑥𝑥 =0 and 𝐶𝐶𝑥𝑥𝑥𝑥 =0.2, that defines the memory 
effect (called memory window); (ii) the sliding window between 𝐶𝐶𝑥𝑥𝑥𝑥 =0.2 (positive 
slope) and 𝐶𝐶𝑥𝑥𝑥𝑥 =0.2 (negative slope) (called strong correlation window), and (iii) all 
the m positive values of 𝐶𝐶𝑥𝑥𝑥𝑥 (called full correlation window). Based on [12], the 
correlations between gauges and response times are indicated in Table 3. 

Table 3. Correlation analysis of the data 

Rain gauge Mialet (h) SRDT (h) BDC (h) 

Average response-time  2 3 4.5 
Response-time range  1 – 3.5 2.5 – 4.5 4 – 5.5 

Rainfall-discharge average cross-correlation  0.40 0.455 0.44 

Rain gauge cross-correlation 
Mialet -- 0.58 0.45 
SRDT -- -- 0.61 

- The partial cross-validation score was operated on a subset of K events, the 17 most 
intense events in the database [3].  
- The number of hidden neurons was increased from 1 to 10. The best model was chosen 
according to the highest cross-validation score 𝑆𝑆𝐶𝐶 estimated as following:  

𝑆𝑆𝐶𝐶 = 1
𝐾𝐾

 �∑ |𝐸𝐸𝑖𝑖|2𝐾𝐾
𝑖𝑖=1                      (4) 

Where Ei is the validation error of the subset i used in partial cross validation. 
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- An ensemble model is used in order to regularize on the initialization of parameters; 
moreover, the output values are the result of the median of the outputs of an ensemble 
of 20 members differing only by their initialization before training [8]. 
- Three bias values were considered (0.01; 0.1; 1), three depths of sliding windows and 
three kinds of models (see section 2.3), i.e. 27 different models have been designed 
following the procedure indicated in [9]. The best one in each kind of models has been 
chosen, regarding the test event, in order to have the most efficient models to analyze.  

Architectures presented in Table 3 were thus selected. 

Table 3. Selected models 

Input variables Static Recurrent Feed-Forward 

Rain-gauge window width (nr) (BDC/SRDT/Mialet) 32/32/23 27/28/20  32/32/23 
Cumulative rainfall window width  3 3 3 

Order (r) / Previous observed outputs x 3 3 

Number of hidden nonlinear neurons 2 10 5 

Bias value 1 0.01 0.01 

3.3 Discharge estimation 

As shown in [9, 4], the best results are provided by the feed-forward model. This is 
usual because the feedforward model uses the previous observed output as a state 
variable. The recurrent model is not as efficient but exhibits better dynamics, which is 
also frequently observed [4]. The static model presents an acceptable performance, 
being able to generate 63% of the peak discharge (Table 4; Fig 3).  

Table 4. Models performances on the test set  

Model  R² SPPD % PD (0.5h) 
Static 0.83 63,3 1 
Recurrent. 0.89 78.5 0 
Feed-Forward 0.99 99.3 1 

3.4 Contributions of input variables 

After having verified that the models are convenient, it is possible to apply the KnoX 
method. The extracted contributions are presented in Table 5 [9]. 

It is interesting to compare the relative weights of the three rain gauges with a classic 
method dedicated to distribute rainfall on a watershed and widely used in hydrology: 
the Thiessen polygons method (or Voronoï polygons). This comparison is presented in 
Fig. 4. 
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Fig. 3. Hydrographs for the test set. Min_sim and Max_sim correspond to the minimum 
and maximum values of the ensemble model. Q is the median of the 20 members of the 
ensemble.  
 
Table 5. Contributions (Px) for the variables, from each model, expressed in %. 

Name of variable X Static Recurrent Feed-forward 
BDC 11 % 10 % 9 % 
SRDT 31 % 17 % 22 % 
Mialet 13 % 12 % 5 % 

Cumulated rainfall 31 % 20 % 12 % 
Previous Q. obs -- -- 45 % 
Previous Q. calc -- 25 % -- 

bias 14 % 16 % 7 % 

Total 100 % 100 % 100 % 

As Mialet (MIA) is at the outlet of the basin and Barre-des-Cévennes (BDC) at the 
top of the basin, they are both represented with less contribution than Saint-Roman-de-
Tousque (SRDT, near the middle of the basin) by the Thiessen polygon method. It is 
more or less also the case for the neural network models, with a very similar distribution 
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to Thiessen distribution for the static model, being a little more different for the 
recurrent model and even more for the feed-forward model (providing the best results). 

 
Fig. 4. Thiessen method weights (a) and relative weights form the models of the three rain 

gauges (b, c, d). 

3.5 Results: contributions as a function of time windows 

Here, we have considered the distribution of contributions amongst the time delay in 
the first layer of parameters (arriving to the linear neurons in Fig 2). We compare the 
sum of these contributions (for the three rain gauges) to the cross-correlogram of the 
average rainfall (average of the three rain gauges) and the discharge. This comparison 
involves the three selected models presented in section 3.1 (Fig. 5). 
The static model shows the greatest similarity with the cross-correlogram, for the total 
contributions and for the relative contributions of each rain gauge. Regarding the 
response time (time corresponding to the peak of the cross-correlogram) the static 
model seems also to be the best. This result is logical because the variables taken into 
account by the static models are similar to those considered by the cross-correlogram: 
only rains.  
For the three models, the SRDT rain gauge is the most represented in most of the time 
lags considered and not only in general, as shown in section 3.4. 
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Fig. 5. Cross-correlogram (mean rainfalls-Mialet discharge) and distribution of contributions 

calculated as indicated in section 2.4. 

3.6 Results: effects of the bias 

Before obtaining the selected models, many different combinations were tried during 
optimization. Among these combinations, three values of bias have been experimented, 
each separated by an order of magnitude: 0.01, 0.1 and 1. The Fig. 6 shows the 
contributions of Saint-Roman-de-Tousque amongst the delays of the input time 
window, for the three types of models (static, recurrent, feed-forward) and for the three 
time-windows defined in section 3.2 (memory, strong correlation and full correlation 
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windows). The other rain gauges have not been presented here due to the large number 
of figures it would have produced; but the Saint-Roman-de-Tousque station is 
representative of the three rain gauges from this point of view. 

It can be noticed that the bias value does not deeply impact the contributions of the 
input variables. In particular, it does not change the general shape of these contributions 
even if in some cases, moderate amplitude differences appear. 

 
Fig. 6. Saint-Roman-de-Tousque contributions calculated as indicated in section 2.4 with 

different bias and in different modeling configurations: (a), (b) and (c) are for static models; 
(d), (e) and (f) are for recurrent models; (g), (h), and (i) are for feedforward models whereas (a), 
(d) and (g) are for memory windows; (b), (e) and (h) are for strong correlation windows and (c), 

(f) and (i) are for full correlation windows. 

4 Discussion 

These results show how the kind of model takes into account explanatory variables on 
an observed phenomenon. Even if they use the same exogenous variables in the same 
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context, their performances and behaviors are different due to their configuration and 
architecture. 

4.1 Selecting a model type for physical knowledge extraction 

Analyzing the contributions assigned to each input variable (Table 5), it appears that: 

- The static model strongly uses exogenous variables (total contribution of 55%) and 
uses an important contribution (31%) to the cumulated rainfall that is useful to represent 
the soil saturation and could thus be considered as a substitute to a state variable. 
- The recurrent model uses mostly previous estimated discharge (25%), whereas the 
total contribution of cumulated rainfall (20%) and of exogenous variables (40%) is 
lower than for the static model. 
- The feedforward model uses a smaller contribution for rains (12% for cumulated 
rainfall and 36% for exogenous variables) whereas previous observed values of 
discharge contribution is predominant (45%). 

As foreseen by [14], the optimal type of model is strongly linked to the quality of 
explanatory information that is given to the model during the training phase. Here, we 
show that, despite its low performance, the static model is forced to represent, the 
physical relationship between exogenous variables and the output, whereas the 
recurrent model and the feedforward model are helped in this task resp. by the previous 
estimated or observed discharge. Consequently, the total use of the exogenous variables 
decreases when state variables information increases. If we compare the relative 
contributions of the three rain gauges with the Thiessen polygons, we observe a 
decrease of the similarity while state variables are added. 

Finally, in this study, the best tradeoff between model performance and knowledge 
extraction capacities seems to be provided by the recurrent model. Nevertheless, this 
conclusion is based on one test set, it should be confirmed by further studies. 

4.2 Response time and contributions 

The cross-correlation provides a simple linear representation of the behavior of the 
modeled system and allows estimating the response time. Here again, while the 
contributions of state variables appear, the similarity with the correlogram decreases. 
This could be interpreted as a confirmation that recurrent and feed-forward models 
represent well the behavior that takes profit of the rich information provided by the 
previous discharge input (estimated or simulated): the accumulation of previously 
fallen rains. The less the model is helped by the previous discharge input, the more it is 
forced to represent well the role of recent and ancient rainfalls. This appears in Fig. 6.d 
and 6.g with great values of recent rains contributions; on the equivalent contributions 
in 6.e and the "noisy" contribution of the Fig 6.i (feed-forward with the maximum 
window-width). 
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4.3 Bias input importance 

The bias input plays a role that is usually interpreted in hydrology as the base flow 
(remaining discharge when there is no rainfall). In this case, its contribution is 
consistent: it is significantly less involved in the calculation of the output when the 
previous observed discharges are used as input (the previous base flow is thus applied 
by the inputs). In the other cases, it seems to guide the models to acceptably 
approximate the discharge information when necessary. 

If the bias input seems necessary to guide the model, its value does not deeply change 
the distribution of the contribution of the rain gauges as a function of the instant of the 
time window. One could suppose that changing an order of magnitude in the bias input 
value can easily be counterbalanced during the training step by applying a proportional 
modification to the weights applied to this input. 

5 Conclusions and perspectives 

Flash flood forecasting is a very challenging task, especially in the Cévennes range. 
Several examples of robust forecasts using neural networks have been published but 
the results did not always allow understanding how close the model was to the physical 
behavior of the basin, in addition of being close to the observed output. The obtained 
results prove again that when using relevant and properly combined variables on any 
of the networks used here, an efficient model can be implemented. 

Nevertheless, enhancing these models and applying them to an increasing number 
of basins, in a context of climate change, and with various characteristics, requires a 
better understanding of the processes involved in their operation as well as in such flood 
events. For this purpose, the KnoX method, developed to extract information from a 
neural network model, was applied to the Gardon de Mialet basin. This method allows 
understanding how the variables are handled by the model to approximate the modeled 
phenomenon. First it appears that the bias input was consistently used to model the base 
flow. Then, interestingly, there has been evidence that the variables do not express 
themselves in the same way depending on the different models used. It was known that 
the choice of a model must be driven by the modeling goal (for example a recurrent 
model for a long-term prediction). Besides being driven by the modeling goal, it 
appears that the choice for a model might be guided by the situation: availability (real-
time and historical) of data, quality and explanatory nature of the data. In this study, 
this results in three kinds of model: static, recurrent, feed-forward, showing increasing 
performances while taking into account more realistic state variables. On the other 
hand, if assess the performance of a kind of model by the ability to extract physical 
information from it, the ranking is reversed and the less the model considers state 
variables, the more the design of its estimator will adopt behaviors that mimic the 
physical processes. 

Finally it appears that the KnoX method shows very interesting capabilities; the next 
steps will consist in generalizing this method to other sites and other rainfall events in 
the Cévennes range, with an increasing complexity in the physical processes to extract 
(dams and/or karst systems for example).. 
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