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A B S T R A C T   

Accounting for freshwater resources and monitoring floods are vital functions for societies throughout the world. 
Remote-sensing methods offer great prospects to expand stream monitoring in developing countries and to 
smaller, headwater streams that are largely ungauged worldwide. This study evaluates the potential to estimate 
discharge using eight radar units that have been installed over streams in diverse hydrologic and hydraulic 
settings across the United States. The research highlights error characteristics associated with the measurements 
of stage using pulsed wave radars, mean channel velocity from continuous wave Doppler radars, and their 
combined use to estimate discharge at sites that were collocated with conventional streamgauges. Potential stage 
biases caused by the thermal expansion and contraction of supporting structures due to diurnal temperature 
changes were examined. A dry concrete, flume showed the temperature-dependent stage variations were no more 
than 2 cm. Surface velocity retrievals needed to be adjusted to represent the mean channel velocity when 
estimating discharge. Different approaches were evaluated and application of two different, depth-dependent 
adjustment factors was found to yield the most accurate estimates. This study found that it is possible to get 
accurate discharge estimates from noncontact radar measurements, providing cost-effective solutions for remote 
sensing of ungauged streams. Lastly, radar measurements of the raw variables (i.e., stage and surface velocity) 
can be used in an early alerting context to detect flash floods in ungauged streams.   

1. Introduction 

Stream discharge estimates are of paramount importance for 
stormwater management, flood forecasting, estimating sediment load 
for water quality, water resources management, navigation, recreation, 
and endangered species protection and management. Conventional 
streamgauges, such as those operated and maintained by the U.S. 
Geological Survey (USGS), provide measurements of water depth 
(Eberts et al., 2018). To compute the discharge, an empirical relation is 
established between the stage, which is the measured water depth plus 
bed elevation, and discharge to compute a stage-discharge rating. These 
rating curves require manual, in-situ measurements of the variables to 
compute discharge (i.e., distribution of flow velocity, stream cross- 
section, stage) over a wide range of river flow conditions (Buchanan 
and Somers, 1969). Technicians collect these data approximately every 
six weeks using a combination of current meters and hydroacoustic 

devices. Instream and near-bank vegetation changes and sediment 
deposition and scour, which can become enhanced during floods, can 
change the shape of a previously surveyed cross-section and the asso
ciated rating curve (Mason and Weiger, 1995). Changes in the hydrau
lics and channel cross-section require regular visits and instream 
measurements. Remote sensing has increasingly become a more desired 
alternative to manual surveying and conventional, in-situ measurement 
techniques because remote-sensing instruments do not need to be in 
contact with the water (Moramarco et al., 2019). Remote-sensing in
struments provide increased safety to the technicians and are less likely 
to be lost during major floods than fixed, traditional streamgauging 
equipment, in addition to providing the potential for less expensive 
operations and maintenance (Fulton et al., 2020). 

Remote-sensing technologies used to estimate discharge in streams 
include cameras and radars. Image analysis using cameras, such as the 
large-scale particle image velocimetry (LSPIV) technique have 
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demonstrated the capability of estimating surface velocities in streams 
(Fujita et al., 1998; Creutin et al., 2003; Muste et al., 2008). Stringent 
procedures are followed to ensure usable image quality in long, wide 
natural channels, and operational applications are challenged by 
bandwidth requirements for transmitting video (Kim et al., 2007; Tauro 
et al., 2017). Detert (2021) provides a set of guidelines to help users 
improve their procedures for performing image-based surface velocity 
measurements. After its first introduction in 2000, various noncontact 
radar techniques have been utilized for stage and surface velocity 
measurements (Costa et al., 2000). Instruments include a helicopter- 
mounted radar, an X-band pulsed radar, coherent microwave systems, 
continuous wave microwave, monostatic UHF Doppler, and pulsed 
Doppler microwave radar (Lee et al., 2002; Melcher et al. 2002; Plant 
et al., 2005; Costa et al., 2006). These studies were primarily experi
mental and demonstrate the basic measurements of stage and surface 
velocity in rivers. Until now, very few research studies have assessed the 
uncertainty of noncontact measurements with radars (Welber et al., 
2016; Fulton et al., 2020). 

Our study is a component of the larger Automated NonContact Hy
drologic Observations in Rivers project (ANCHOR; https://www.nssl. 
noaa.gov/projects/anchor/) that was originally motivated by the 
noncontact, radar-based discharge estimates presented in Costa et al. 
(2006). In the present study, we use a stream radar unit that integrates 
two noncontact radar methods to retrieve both the stage and surface 
water velocity of a stream simultaneously. Eight stream radars have 
been installed on bridges, culverts, and cables throughout the United 
States and provided year-round measurements with a typical temporal 
resolution of 5–10 min. The objectives of this study are as follows: (1) to 
identify and quantify the error in stage measurements by the nadir- 
pointing, pulsed wave radar, (2) to optimize the correction for trans
lating surface water velocities from the Doppler radar to a mean channel 
velocity needed to compute discharge from noncontact measurements, 
and (3) to assess the sensors’ capabilities to detect the rapid onset of 
flooding events in ungauged basins. Section 2 describes the physical 
settings of the radar deployments and the methods used for deriving 
discharge. Section 3 identifies sources of measurement uncertainty and 

quantifies them. Section 3 also reveals the characteristics of a major 
flash flooding event. Conclusions from the study and a discussion are 
summarized in Section 4. 

2. Methods and materials 

2.1. Study area 

To represent a variety of meteorological, hydrologic, and hydraulic 
characteristics, eight stream radars have been installed on cables, cul
verts, and bridges across streams at locations in four states in the United 
States. As shown in Fig. 1, three are installed in Texas, two each in 
Arizona and Oklahoma, and one in Colorado. Site selection was based on 
several factors including proximity to a conventional streamgauge, a 
need for monitoring, cellular network signal strength, site security and 
access, and hydraulic suitability of the site for monitoring. These con
straints permitted testing of the radars for a variety of hydrologic and 
hydraulic settings. The radars were installed on a bridge in an urban 
setting (Fig. 2a,b), above a small natural channel in a rural setting 
(Fig. 2c,d), on an instrumented flume in the desert (Fig. 2e,f), on a bridge 
above a river with frequent morphological changes (Fig. 2g,h), above a 
small creek upstream from a popular summer camp (Fig. 2i,j), on a box 
culvert over a spring-fed creek (Fig. 2k,l), above an engineered urban 
channel (Fig. 2m,n), and above a stream on a railway bridge (Fig. 2o,p). 
In general, it took two to three people a few hours to install the sensors. 
The basin areas for these streams range from 2 to 3676 km2 and are 
characterized by different land-use settings including forested, urban, 
and desert (Table 1). The 5- or 10-minute logging rate is user-defined. 

Cherry Creek is a tributary of the South Platte River that runs near 
Denver, Colorado (Fig. 2a). The area of the basin is 1059 km2. According 
to the National Land Cover Database 2011 (NLCD 2011) (Homer et al., 
2015), land use in the upper part of the basin is mostly vegetation (e.g., 
herbaceous and shrub/scrub), whereas the lower part is a developed 
area where the site is located. The relative proportions of sand, silt, and 
clay are 53.9%, 29.7%, and 16.4%, respectively as per CONUS soil 
datasets (Miller and White, 1998). The area has a mean basin slope of 

Fig. 1. Locations of the eight stream radars in four different states of the United States.  
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(a) Cherry Creek, Colorado

(b) 

(c) Mill Creek, Oklahoma 

(d) 

Fig. 2. Basin boundaries and site photographs for the eight sites shown in Fig. 1. Base map layers are provided by Environmental Systems Research Institute.  
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7.9%. The mean annual precipitation from 1981 to 2010 at the radar 
location is 404 mm (PRISM, 2004). The stream radar is mounted on a 
bridge here (Fig. 2b) and situated approximately 60 m upstream from a 

USGS streamgauge (ID – 06713500). 
Mill Creek runs through rural Johnston County, Oklahoma. The 

basin area is 124 km2 (Fig. 2c). The NLCD 2011 land use of the area is 

(e) Walnut Gulch, Arizona

(f)  

(g) Paria River, Arizona (h) 

(i) Falls Creek, Oklahoma 

(j) 

Fig. 2. (continued). 
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mostly herbaceous and hay/pasture lands. The soil texture has a relative 
proportion of sand, silt, and clay as 27%, 42.3%, and 30.7%, respec
tively. The area has a mean basin slope of 3.2% and the mean annual 

precipitation near the radar location is 1027 mm per year. The radar is 
cable mounted (Fig. 5) and has a USGS streamgauge approximately 30 m 
upstream from its position (ID – 07331200). 

(k) Sessom Creek, Texas

(l) 

(m) Austin North, Texas (n) 

(o) Austin South, Texas (p) 

Fig. 2. (continued). 
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The stream radar at Walnut Gulch is part of the dense instrumenta
tion comprising the U.S. Department of Agriculture (USDA)/Agricul
tural Research Service’s Walnut Gulch Experimental Watershed in 
southeast Arizona. Water moves through a concrete flume here and the 
size of the contributing area is 7.8 km2 (Fig. 2e). The primary land-use 
type of the basin is desert vegetation (e.g., shrub and herbaceous). The 
relative proportions of sand, silt, and clay are 58%, 29.6%, and 12.4%, 
respectively. The basin has a moderately sloping mean gradient of about 
12.1%. The mean annual precipitation amount is 356 mm. The radar is 
mounted on a bridge (Fig. 2f) and collocated with a conventional USDA 
streamgauge. Discharge data are provided only during events and can be 
just a few episodes per year during the monsoon. 

Paria River is a tributary of the Colorado River that runs from 
southern Utah towards northern Arizona. It has a very large basin area of 
approximately 3676 km2 for the radar location (Fig. 2g). The upper part 
of the basin has some vegetation land usages, but the rest of the area is 
mostly barren, desert land. For soil texture, the relative proportions of 
sand, silt, and clay are 56%, 23.3%, and 14.7%, respectively. The basin 
has a high mean slope of 20.9%. The area near the radar has a very low 
mean annual precipitation of 185 mm. The radar is mounted on a bridge 
(Fig. 2h) and has a USGS streamgauge (ID – 09382000) about 1.2 km 
upstream from its position. Because of this distance between the USGS 
streamgauge and the stream radar, it is not considered to be collocated 
to conduct direct discharge comparisons. 

Falls Creek originates from the springs of the Arbuckle-Simpson 
aquifer and flows towards the northeast into the Washita River in 
Oklahoma. The size of the basin area for the stream radar location is 
15.1 km2 (Fig. 2i). The land uses mostly include grassland and different 
types of forest (e.g., evergreen and deciduous). The relative proportions 
of sand, silt, and clay are 23%, 63%, and 14%, respectively. The mean 
basin slope is 7% and mean annual precipitation is approximately 1000 
mm. The radar is cable mounted (Fig. 2j) and not collocated with any 
other streamgauge. 

Sessom Creek is a spring creek that drains to the San Marcos River in 
Texas. Water moves through a concrete box culvert. The contributing 
area at stream radar’s location is only 1.6 km2 (Fig. 2k). Land uses 
involve mostly development, open space, and evergreen forest. The soil 
texture has a relative proportion of sand, silt, and clay as 24.5%, 25.5%, 
and 50%, respectively. The mean basin slope is 11.6% and mean annual 
precipitation near the radar location is about 861 mm. The radar is 
mounted on a culvert as shown in Fig. 2l and there is no other stream
gauge near the site location. 

Austin North is sited on a tributary of Walnut Creek, which flows 
southeast into the Colorado River in Austin, Texas. The basin area for the 
stream radar location is 4.3 km2 (Fig. 2m). The land uses of the area 
involve open space and moderate degrees of development. The relative 
proportions of sand, silt, and clay are 22.9%, 26.2%, and 51.0%, 
respectively. The mean basin slope is 5% and the mean annual precip
itation is about 862 mm. The stream radar is mounted on a box culvert, 
which supports a train bridge (Fig. 2n), and it is not collocated with any 
other streamgauge. 

The Austin South unit is placed above West Bouldin Creek, which 

flows northeast until it reaches the Colorado River in Austin, Texas. The 
radar location has a basin area of 4.6 km2 (Fig. 2o). The area is a 
developed one that involves both open space and intense development. 
Soil texture has a relative proportion of sand, silt, and clay as 17.8%, 
32.5%, and 49.8%, respectively. The basin has a mean slope of 7.7% and 
mean annual precipitation is 856 mm near the radar location. The radar 
is mounted on a train bridge (Fig. 2p) and there is no other streamgauge 
here. 

2.2. Noncontact measurement principles 

The stream radar units evaluated in this study are manufactured by 
SOMMER Messtechnik and alternatively known by their model name: 
RQ-30. The stage radar uses a pulsed 26 GHz microwave radar with a 10̊
beamwidth pointing in the nadir direction. The radar can operate from 
0 to 15 m above the stream or 0–35 m, depending on the specific unit. 
Stream velocities are measured using a continuous wave 24 GHz 
Doppler radar with a 12̊ beamwidth and can look either in the upstream 
or downstream direction of the channel at a fixed 56̊ angle off nadir. The 
stage radar has a vertical resolution of 1 mm while the velocity radar has 
a resolution of 1 mm s− 1. The velocity sensor can operate in scenarios 
where the distance to the water surface is 0.5–35 m. Both units are 
powered by a single 12 V 15 amp-hr battery that is charged using a 30 W 
solar panel. Data are typically logged every 5–10 min and transmitted 
hourly using cellular data communications. The HyQuest Solutions’ IP 
datalogger iRIS 350FX datalogger has an alerting feature that auto
matically increases the frequency of data logging and transmitting to 1 
min when thresholds are and can send SMS text messages. 

2.2.1. Water level measurement 
For water level measurement, the radar sensor transmits a short 

microwave pulsed signal to the stream and receives its echo as the pulse 
reflects off the water surface. The time lag between sending and 
receiving the signal is directly proportional to the distance between the 
sensor and water surface and is determined as below: 

h =
ct
2

(1)  

where h is the distance between the water surface to the sensor (m), c is 
the speed of light (m s− 1), and t is the measured time (s) of the two-way 
travel distance of the pulse. The distance (E) between the bottom of the 
sensor and a ground reference level corresponding to the mean of the 
channel bottom elevation (GZ) is measured when the unit is installed 
(Fig. 3). 

Bridges, culverts, and cables experience thermal expansion and 
contraction throughout the day as they heat and cool in response to 
atmospheric diurnal temperature changes. These thermal expansions/ 
contractions may cause the radar to move from its original position 
leading to a deviation from the actual stage measurements. To evaluate 
this effect, stage data are selected during periods with steady base flow, 
and two such periods are chosen to confirm the consistency of the 
behavior throughout the whole timeseries. For each station, air 

Table 1 
Summary of basin characteristics and radar deployments for all the stations. (CL = collocated with a conventional streamgauge, NCL = Non-collocated with a con
ventional streamgauge).  

Station Basinarea (km2) Land Use Radar Mounting Status Data Period Temporal Data Resolution (minutes)       

Start End  

Cherry Creek (39.7421, − 104.9996) 1059 Urban Bridge CL Aug 2017 Apr 2019 5 
Mill Creek (34.4048, − 96.8632) 124 Pasture/ Cropland Cable CL Sep 2017 Sep 2018 10 
Walnut Gulch (31.7417, − 109.9947) 7.8 Desert Bridge CL Jul 2018 Nov 2019 10 
Paria River (36.8722, − 111.5939) 3676 Desert Bridge NCL Jul 2018 Oct 2019 10 
Falls Creek (34.4222, − 97.1130) 15.1 Forest Cable NCL Mar 2017 Jun 2019 10 
Sessom Creek (29.8906, − 97.9367) 1.6 Urban Culvert NCL Nov 2017 Jun 2019 10 
Austin North (30.4160, − 97.7300) 4.3 Urban Culvert NCL Jul 2018 May 2019 5 
Austin South (30.2480, − 97.7670) 4.6 Urban Bridge NCL Jul 2018 Sep 2018 5  
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temperature data are collected from the “Local Climatological Data 
(LCD)” database of National Oceanic and Atmospheric Administration 
(NOAA) (NOAA, 2019), which typically records temperature at airports 
(Table 2). It is assumed in this study that air temperature measured at 
the closest airport is representative of the temperature experienced at 
the stream radar location, while more accurate measurements could be 
made at the site or obtained from a nearby personal weather station. The 
distances from the stream radar to the nearest surface weather station 
varied from 6.8 km to as far as 73.5 km. Finally, stage and air temper
ature data are evaluated for each steady base-flow period. 

2.2.2. Surface velocity measurement 
The surface velocity measurement is based on the principle of surface 

scattering and the Doppler shift. The radar sensor transmits a signal to 
the stream at fixed angle of 56̊ off nadir. This signal is backscattered by 
the movement of the small-surface waves that occur on the water surface 
and are assumed to be propagating in various directions but all riding on 
the large-scale motion on the water. Various means have been demon
strated to retrieve water surface velocity from surface scattering and 
Doppler shift (Plant et al., 2005; Fulton et al., 2020). Here, we present 
the physical basis for retrieving the surface velocity, while the Sommer 
manufacturer applies their own spectral analysis to the signal and 
retrieval algorithm. 

The lengths of these short waves are determined by the Bragg reso
nance condition (Plant et al., 2005) as: 

λb =
λ

2sinθ
(2)  

where, λb is the wavelength of the resonant water wave (i.e., the Bragg 
wave) (m), λ is the wavelength of the radar beam (m), and θ is incidence 
angle (degree). When we use the values associated to the K-band radar 
(i.e., λ = 1.25 cm, θ = 56̊), we find a wavelength associated to the small- 
surface wave scatterers on the water surface of 0.75 cm. 

When the transmitted signal returns to the sensor, there is a motion- 
induced frequency shift due to the Doppler effect. By calculating the 
shift in frequency, the surface velocity is computed as follows (Fulton 
and Ostrowski, 2008): 

v = fdλb (3)  

where, v is the surface velocity (m/s), fd is the radar-measured Doppler 
shift in frequency (Hz or s− 1), and λb is the wavelength of the resonant 
water wave (m). 

The radar sensor measures surface velocities of the illuminated 
footprint via a 12̊ beamwidth. This area increases with the distance 
between the water surface and the sensor. From the velocity distribution 
of the illuminated area, the Doppler spectrum is created, analyzed, and 
used by the algorithm to report the velocity. The sensor can detect 
movement both towards and away from the sensor, and the shift in 
frequency depends on this direction. For better detection, the water 
body requires observable disturbances at the surface. Minimum distur
bances can also be produced by wind or rain (Costa et al., 2006). Wind 
drift can bias surface velocity measurements depending on site charac
teristics such as in a narrow valley, a stream with low hydraulic 
gradient, and with surface velocities less than 0.15 m/s (Fulton et al., 
2020). In the Fulton et al. (2020) study, they use an anemometer 
collocated with a stream radar and then propose a wind drift correction 
scheme. The correction scheme is based on the Prandtl von Karman wind 
velocity distribution; the component of the wind vector component that 
is in the direction of the stream and the stream radar’s orientation is then 
added or subtracted to arrive at the wind-corrected surface velocity 
value. 

High wind speeds can also potentially affect measurements from the 
cableway-mounted systems by altering their verticality. The computa
tion of velocity in the RQ-30 takes into account the inclination of the 
sensor, as measured by an onboard inclinometer. For fixed mounts, this 
inclination measurement is performed once (first measurement after a 
reboot or config file change). For cableway-mounted radars, a new 
inclination measurement is applied with each velocity measurement. 
This mostly accounts for gradual movement of the mounting points (as 
cables and supporting structures expand/contract and branches grow). 
Cables are installed with high tension to avoid high-frequency swing, 
but in the case of high winds causing inclination changes on the order of 
the measurement time, this will be reflected as a low value in the 
“quality” parameter that is logged for every velocity measurement. The 
quality parameter is based on the Doppler spectrum and reflects the 
sharpness of the peak velocity and the signal-to-noise ratio. Negative 
quality values indicate poor quality velocity measurements and these 
data are rejected when comparing to collocated station data. 

2.3. Discharge computation 

From the conservation of mass theory, volumetric discharge is 
computed as below: 

Q = vA (4)  

where, Q is the discharge (m3/s), vis the mean channel velocity (m/s), 
and A is the wetted cross-sectional area (m2). 

The vertical velocity distribution in natural, open-channel flows is 

Fig. 3. Water level measurement technique by stream radar (modified from 
Sommer, 2014). To retrieve water depth (W), the distance (E) between the 
sensor and a reference level corresponding to the mean of the channel bottom 
elevation (GZ) is entered into the sensor so that the sensor can automatically 
determine W from the difference between E and the measured h. 

Table 2 
Summary of air temperature data used in the study.  

Station Airport Name Data Resolution 
(minutes) 

Data Period 

Start End 

Cherry 
Creek 

Denver Centennial Airport, 
Colorado 

60 Jul 
2018 

Aug 
2019 

Mill Creek Ardmore Municipal 
Airport, Oklahoma 

60 Mar 
2017 

Jun 
2019 

Walnut 
Gulch 

Douglas Bisbee 
International Airport, 
Arizona 

60 Aug 
2017 

Jul 
2019 

Paria 
River 

Page Municipal Airport, 
Arizona 

60 Jul 
2018 

Jul 
2019 

Falls 
Creek 

Ardmore Municipal 
Airport, Oklahoma 

60 Mar 
2017 

Jun 
2019 

Sessom 
Creek 

San Marcos Municipal 
Airport, Texas 

60 Nov 
2017 

Jun 
2019 

Austin 
North 

Austin Bergstrom 
International Airport, 
Texas 

60 Jun 
2018 

May 
2019 

Austin 
South 

Austin Bergstrom 
International Airport, 
Texas 

60 Jun 
2018 

May 
2019  
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characterized by a velocity dip below the free surface and can be 
modeled by a modified log-wake law (Guo and Julien, 2008). Quick 
changes of velocity are mainly observed near the channel bottom and 
banks. It is generally assumed that the depth-mean velocity of a channel 
can be found at 0.6 times the depth below the water surface for relatively 
shallow channels, or from the mean of the velocities found at 0.2 and 0.8 
times the depth below the surface for deep channels. For example, if a 
channel has a total water depth of 10 m, then the depth-mean velocity 
can be estimated at a depth of 6 m below the surface, or, from the mean 
of the velocities at depths of 2 and 8 m below the surface. Mean channel 
velocity for a natural channel can be estimated from the surface velocity 
by multiplying it by a constant (Rantz, 1982). Therefore, discharge from 
radar observations at any time step i is computed as below: 

Qi = kgviAi (5)  

where, Qi is the discharge (m3/s), kg is a “global” k coefficient that re
lates the surface velocity to mean channel velocity, vi is the surface ve
locity (m/s), and Ai is the wetted cross-sectional area (m2). 

2.3.1. Determination of k value 
A “k” coefficient of 0.85 to 0.90 is used to translate a surface velocity 

to a mean-vertical velocity (Rantz, 1982). This assumes the vertical 
velocity profile can be approximated using a logarithmic distribution or 
power law; however, if the vertical velocity distribution is non-standard 
- where the maximum velocity occurs at depth - a different coefficient is 
required for each vertical in the channel cross-section. Although multi
ple studies accept the validity of the default value for natural channels, 
from recent experiments it is found that the actual value of k depends on 
the roughness of the bed material, the place where the measurement is 
made, and Reynolds number (Costa et al., 2000; Melcher et al., 2002; 
Costa et al., 2006; Le Coz et al., 2012; Welber et al., 2016). Also, sec
ondary currents, presence of vegetation, or tidal fluctuations can affect k 
(Johnson & Cowen, 2017). Considering different criteria, numerous k 
values have been recommended such as 0.85 and 0.93 for base-flow and 
high-flow conditions, respectively (Harpold et al., 2006); 0.79 to 0.93 
depending on the roughness condition of the channel bed (Polatel, 
2006); 0.75 to 0.83 for high-flow situations in mountain channels 
(Jodeau et al., 2008); 0.79 to 1.72 in compound or irregular channels 
(Sun et al., 2010); 0.72 to 0.79 for channel bed consisting of gravel 
(Dramais et al., 2011); 0.86 to 1.18 due to secondary currents (Gunawan 
et al., 2012); 0.82 to 0.93 for varying Reynolds number (Johnson & 
Cowen, 2016); and so on. 

A cross-section averaged k coefficient, or global k coefficient (i.e., kg 
in Equation (5)), is needed to compute discharge if there is only a single 
surface velocity measurement available along a given stream cross- 
section. This is the case with the fixed deployment of the stream ra
dars. Given the larger roughness values and shallower depths near the 
banks, global k coefficients are expected to be lower than the local k 
coefficients reported above. Welber et al. (2016) examined the differ
ences between global and local k coefficients and found that the vari
ability of the global values is considerably smaller than the local values. 
Moreover, they found that the global k coefficients obtained in smoother 
channels fall into the range of the local k coefficients of 0.80–0.91 with a 
mean of 0.86. 

An alternative but related approach to relate surface velocities 
measured by the stream radar to mean channel velocities is based on the 
entropy or probability concept using the ϕ parameter (Chiu and Chiou, 
1986; Chiu, 1987; Chiu, 1989). This concept is based on an assumed 
velocity distribution and is adaptable to cross-sections where the 
maximum velocities are found either at the surface or below the surface. 
Fulton et al. (2020) directly validated the ϕ parameters used to convert 
radar-measured velocities to mean velocities using conventional, in-situ 
measurements. They found values for the ϕ parameter ranging from 0.52 
to 0.78, which yielded very close agreement to mean velocities from 
conventional, mechanical current meters or hydroacoustics. Moreover, 

ϕ does not vary with stage, velocity, discharge, bed form, or approach 
angle, which makes ϕ valuable when dealing with temporal changes in 
physically based models (Fulton et al., 2020). 

To optimize the k values for all three collocated stations, the 
following multi-objective function is developed. The intention is to 
develop a function that considers the entire time series as well as event- 
based statistics relevant for flooding. The developed objective function 
is: 

Ψ =
1
3

NSE+
1
3

(

1 −
VE
100

)

+
1
3
(1 −

PE
100

) (6)  

where, Ψ is a dimensionless quantity that is expected to vary between 
0 and 1, NSE is the Nash-Sutcliffe Efficiency for whole time series, VE is 
the mean volumetric error of an event (%), and PE is the mean error in 
peak-value of an event (%). The multi-objective function is designed to 
equally weight errors in event-based peak flow, volume, and the NSE 
describing the agreement for the entire time series. 

NSE is a metric used frequently in hydrology to describe how well 
two time series covary and is well suited objective function for this type 
of analysis (Servat and Dezetter, 1991; Legates and McCabe, 1999). Use 
of NSE is also recommended by ASCE (1993) and chosen to represent the 
overall accuracy level of the measurements in this study. The event- 
based metrics of mean volumetric error (VE) and peak-flow error (PE) 
and are computed as below: 

VE =
1
n
∑n

i=1
abs

(
(VP,i − VO,i)

VO,i

)

(7) 

where VP,i is the volume of the ith event integrated under the 
hydrograph of radar-estimated discharge (m3), VO,i is the volume of the 
ith event integrated under the hydrograph of conventional discharge 
(m3), n is the total number of events, and abs operator indicates the 
absolute value of the variables within the bracket. 

PE =
1
n

∑n

i=1
abs

(
(PP,i − PO,i)

PO,i

)

(8) 

where PP,i is the peak-flow value of the ith event of radar-estimated 
discharge (m3/s), and PO,i is the peak-flow value of the ith event of 
conventional discharge (m3/s). 

For each collocated station, this study computes the multi-objective 
function using both single-k and double-k values. For all the trials with k 
values, a code is developed in python and the methods below are 
considered during computation. We note that the guidance for default 
values generally apply to local k coefficients, and we apply these find
ings to represent global k values with the understanding that there can 
be differences due to the influences of bed roughness, radar illumination 
area, and water depth.  

• The previous studies show local k values can vary roughly from 0.7 to 
1.0, even greater than 1.0, based on the channel and flow conditions. 
However, for single-k optimization, this study varies the k value from 
0.7 to 1.0 with a trial increment of 0.001.  

• The double-k optimization is based on the work of Hauet et al. 
(2018). With this method, a threshold of water depth limit is set first 
and then two different k values are assigned for the depths above and 
below the threshold. For Cherry Creek and Mill Creek, this threshold 
is varied from 1.8 to 2.1 m as they are natural channels. Under each 
threshold of depth, the lower k value (for depths lower than the 
threshold) is varied from 0.75 to 0.85, while higher the higher k 
value (for depths higher than the threshold) is varied from 0.9 to 1.0. 
The increments for depth threshold and k value are 0.003 m and 
0.001, respectively.  

• Because Walnut Gulch uses a concrete, supercritical flume, this k 
value is varied from 0.85 to 1.0 with an increment of 0.001 following 
the work of Hauet et al. (2018). 
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2.3.2. Calculation of wetted cross-sectional area 
Discharge estimates using the stage-velocity radar data assume that 

there is a stable cross-section. Changes to the bathymetry can have a 
negative effect on the discharge estimates. Therefore, at first, surveys are 
conducted to find a stable channel bottom for each site and then the 
cross-sections are established at the selected location of the channel. A 
cross-section of any channel is measured using a conventional total 
station surveying method. The vertical elevations along the line where 
the radar makes stage measurements are recorded by a total station 
survey relative to the reference level (e.g., point of zero flow, corre
sponding to the channel bottom or lower to allow for scour). However, 
in the case of Mill Creek, the elevation of the floodplain at its left bank is 
complemented from a 1-m resolution digital elevation model (DEM) 
(USGS, 2020) and then merged with the surveyed datapoints to com
plete the cross section. 

Cross-section data (e.g., station and elevation with respect to North 
American Vertical Datum of 1988) of a channel are further loaded into 
an online calculator (NWS, 2020) that gives the corresponding wetted 
area for any water depth. For each site, wetted areas corresponding to a 
range of water depths are determined, where the range varies from the 
minimum recorded stage value for that station to the maximum one with 
an increment of 0.03–0.06 m. Finally, an equation is developed from the 
best fit of these data points and for any ith stage value, Ai is derived from 
the equation. For Cherry Creek, a stage-area rating curve is provided by 
the USGS. It is noted that stage-area and stage-discharge ratings would 
be affected by changes to the channel bathymetry caused by sediment 
deposition or scour, vegetation growth, etc. The site selection for the 
stream radars considered the stability of the channel bottom. In cases 
where the channel bathymetry may be evolving, a stage-velocity rating 
curve using the stream radar variables would need to be developed and 
monitored. A sudden shift in the stage-velocity relation could be indic
ative of change in the channel’s cross-section, which would bias the 
calculation of the discharge. Alternatively, the channel bathymetry can 

be regularly surveyed or even retrieved using remote-sensing ap
proaches such as a bank-to-bank scanning light detection and ranging 
(lidar) as proposed in Gourley (2017). With this measurement, the 
wetted cross-sectional area (and thus discharge) will be more accurate 
than inferred under the assumption of a static cross-section. 

3. Results and discussions 

3.1. Uncertainty in stage measurements 

Fig. 4 shows the time series of radar-measured stage and temperature 
for two of the bridge-mounted radars (Cherry Creek, Walnut Gulch), a 
cable-mounted radar (Mill Creek), and a radar mounted on a concrete 
box culvert (Austin North). The bridge- and cable-mounted radars 
generally exhibit positive correlations with air temperature (Fig. 4a–c), 
while the culvert at Austin South has a weaker, negative correlation 
(Fig. 4d). It is believed that with an increase in temperature, expansion 
of the bridge materials causes the bridge deck and cables to slightly sag, 
which results in the radar deflecting downward from its original position 
yielding an apparent higher stage. This would cause the distance be
tween the radar and the water surface (h in Fig. 3) to decrease resulting 
in an overestimation of stage. The opposite would occur when the air 
temperature cools and the bridge materials contract. In the case of Falls 
Creek, it was discovered that a collocated water treatment plant regu
larly pumps water from the creek that potentially affects the steady state 
of base-flow conditions and the positive correlation with temperature 
was not observed. The radar at Austin South is mounted on a wooden 
train bridge that produces vibration due to frequent trains crossing of 
the bridge. As a result, the stage records become noisy for this station at 
irregular intervals and correlation of stage with temperature cannot be 
readily observed. 

To further quantify the correlation between stage and temperature, 
the correlation coefficient (r) between these two variables is computed 

Fig. 4. Time series of radar-measured stage (m) and atmospheric temperature (̊C) during stable base-flow periods for (a) the bridge-mounted radar at Cherry Creek, 
(b) the bridge-mounted radar at Walnut Gulch site, (c) the cable-mounted radar at Mill Creek, and (d) the culvert-mounted radar at Austin North. Adjusted stages 
from collocated USGS stage measurements are shown in (a) and (c). 
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(Table 3). For Cherry Creek, Mill Creek, Walnut Gulch, and Paria River, r 
varies between 0.526 and 0.804, which indicates a moderate, positive 
correlation between stage and air temperature. Although Falls Creek has 
a cable-mounted radar, the r values during the two base-flow periods are 
0.155 and − 0.139, indicating no correlation. As previously mentioned, 
this is due to the effect on base-flow conditions caused by the pumping 
from the water treatment plant. As for the two box culverts at Sessom 
Creek and Austin North, they both show weaker, negative correlations. 
The stage records at Austin South have little correlation with air tem
perature (r = 0.023 and 0.330) during stable base-flow conditions due to 
the added vibration of the bridge. 

The analysis conducted herein was to assess potential effects of the 
mounting structures on the stage data measured by the radars. Given 
that Walnut Gulch is a normally dry wash, we analyze the stage and 
temperature data during time periods for which there was zero observed 
flow. This analysis provides an indication of the temperature depen
dence of the stage data in the absence of any water in the stream. The 
diurnal temperature range results in an apparent stage change of 
approximately 2 cm, owing to the thermal expansion of concrete of the 
supporting bridge over the concrete flume. 

Stage data from the collocated USGS stations at Cherry Creek and 
Mill Creek are provided for base-flow periods. The stages at these sites 
could potentially be affected by temperature-dependent changes in the 
supporting structures and water in the underlying streams. The USGS 
stations at Mill Creek and Cherry Creek use conventional gas-purge 
(bubbler) systems. Note that their time series are independent from 
the radar measurements or structures used for mounting them. Curi
ously, the two conventional gauges also show a diurnal temperature 
dependence of the stage. The USGS data indicate a daily variation in the 
observed stage as high as 3 cm at Cherry Creek (Fig. 4a) and approxi
mately 1 cm at Mill Creek (Fig. 4c). The stream radar diurnal variations 
in stage are the same as the USGS observations at Cherry Creek and 
approximately 2 cm at Mill Creek, or 1 cm greater than the USGS 
observations. 

It is plausible that these observed stage changes are due to urban and 
rural outdoor water uses, respectively, during the summer months. The 
coefficients of volume expansion for steel and concrete are similar to one 
another at 35 × 10− 6− C− 1. On the other hand, the coefficient of volume 
expansion for water is 210 × 10− 6 C− 1, or approximately six times 
greater than the expansion potential of the supporting materials. It is 
difficult to quantify the uncertainty in the stream radar stage measure
ments when there is water in the channel. Nevertheless, from the com
parisons provided in this analysis, including those from a dry concrete 
flume at Walnut Gulch, we can estimate the diurnal variation caused by 

the thermal expansion of the supporting structures to be within 2 cm. 

3.2. Uncertainty with k value 

3.2.1. Discharge comparison with default, global k value (0.85) 
Prior to estimating discharge, radar-retrieved velocities can be 

compared to in situ measurements using conventional current meters or 
hydroacoustics at multiple depths along the stream cross-section. The 
reader is referred to the Fulton et al. (2020) study that conducted ve
locity validations using the same type of stream radars as used in this 
study. In our case, kg values are initially applied using a default value 
and later optimized using the conventional discharge measurements as a 
constraint. For the three stream radars that are collocated with con
ventional streamgauges, discharge is estimated by reducing the 
measured surface velocity using a default kg factor of 0.85. We note that 
this value has been suggested as a default for local k values and not 
necessarily a global k value; nevertheless, it provides a starting point for 
estimating discharge. This value is then multiplied by the wetted cross- 
sectional area, which is computed from the stage measurements com
bined with the stream’s cross-section as described in Section 2.3. Table 4 
provides the statistical results when comparing to discharge from the 
conventional streamgauges for the entire time series listed in Table 1. 

Table 4 shows that the radar observations of all the collocated sta
tions are quite accurate in providing the discharge estimates when 
compared to their respective streamgauge data. The sample sizes vary 
owing to different hydroclimatologies, sensor reporting frequencies, and 
length of period over which the sensor was operational. The USGS data 
at Mill Creek, Oklahoma, were considered provisional for a three-month 
period in the spring of 2018 but were later approved following this 
study’s analysis period. Further, many low flow cases were not consid
ered in the analysis due to poor quality velocity measurements from the 
stream radar. The sample size at Walnut Gulch is even smaller due to the 
episodic nature of flows in the dry wash during the monsoon. In all cases, 
the radar sensors yield NSE and r values close to 1.0, and the NB values 
are generally small with a slight high bias at the Cherry Creek site. The 
data are also presented in the form of scatterplots in Fig. 5. These results 
are representative of the sensors’ capability of estimating discharge 
without any parameter tuning on streams with a measured or known, 
stable cross-section. 

One objective of the ANCHOR project is to assess the sensors’ ca
pabilities of detecting rapid-onset flooding in vulnerable areas to pro
vide early alerting to local authorities. Fig. 6 compares times series of 
discharge from the stream radars to the conventional gauges for several 
high-flow events. While the statistical comparisons for the entire time 
series indicate very close agreement with the conventional gauges, we 
can identify the following discrepancies in the event-based comparisons: 
(1) underestimation in peak-flow values, (2) underestimation in the total 
water volume integrated throughout the high flow event, and (3) high- 
frequency fluctuations in the stream radar discharge values. Regarding 
the event-based underestimation of both peak flows and volume, one 
potential reason could be an improper setting of the ground reference 
level (GZ), which is meant to be the mean of the channel bottom 
elevation, as illustrated in Fig. 3. This setting would result in bias that 
would affect the entire time series at both high and low flows. The event- 
based hydrographs in Fig. 6 indicate, however, that the discharge esti
mates generally agree at the beginning and end of the events, yet the 

Table 3 
Correlation coefficient (r) between stage and temperature for the selected data 
periods.  

Station Data 
Period 1 

r Data 
Period 2 

r    

Start End  Start End  

Cherry 
Creek 

Sep 9 
2018 

Sep 18 
2018 

0.563 Apr 7 
2019 

Apr 10 
2019 

0.729 

Mill 
Creek 

Sep 9 
2017 

Sep 13 
2017 

0.772 Jul 31 
2018 

Aug 8 
2018 

0.526 

Walnut 
Gulch 

Mar 30 
2018 

Apr 10 
2018 

0.742 Jan 10 
2019 

Jan 18 
2019 

0.639 

Paria 
River 

Jul 20 
2018 

Jul 30 
2018 

0.779 Jul 17 
2019 

Jul 26 
2019 

0.804 

Falls 
Creek 

Jul 22 
2017 

Aug 2 
2017 

0.155 Jun 9 
2019 

Jun 18 
2019 

− 0.139 

Sessom 
Creek 

Oct 12 
2017 

Dec 6 
2017 

− 0.258 May 5 
2018 

May 21 
2018 

− 0.441 

Austin 
North 

Oct 23 
2018 

Nov 2 
2018 

− 0.475 Jan 2 
2019 

Jan 12 
2019 

− 0.129 

Austin 
South 

Aug 15 
2018 

Aug 23 
2018 

0.330 Aug 27 
2018 

Sep 5 
2018 

0.023  

Table 4 
Statistical scores of discharge comparison for the collocated stations (n =
number of datapoints; NSE = Nash-Sutcliffe Coefficient, unitless; r = Coefficient 
Correlation, unitless; NB = Normalized Bias; RMSE = Root Mean Square Error).  

Station n NSE r NB (%) RMSE (m3/s) 

Cherry Creek 150,552  0.925  0.972  13.56  0.27 
Mill Creek 654  0.931  0.967  4.78  1.27 
Walnut Gulch 64  0.976  0.996  − 2.28  1.33  

M. Rahman Khan et al.                                                                                                                                                                                                                       



Journal of Hydrology 603 (2021) 126809

11

peak flows are still underestimated by the stream radar. This stage- 
dependent bias is evaluated in more detail in the next section. 

Conventional gauges represent the event dynamics from stage mea
surements that are then converted to discharge using a rating curve. In 
the case of the stream radars, the time-varying velocity and stage data 
are both used to compute discharge. The fluctuations in the stream radar 
hydrographs are found to be caused by the velocity measurements and 
not the stage. The noise in the surface velocity retrievals can be caused 
by small waves initiated by wind and/or rain, secondary currents, and 
potentially some slight swinging of the instrument for the cable- 
mounted radars. Nevertheless, these fluctuations are deemed random 
errors and are assumed to not cause bias. These random errors can be 
mitigated by using a smoothing window on the velocity (or discharge) 
data. 

3.2.2. Sensitivity analysis for global k value 
The prior analyses indicate that while the stream radars yield 

discharge values with default kg values that agree quite well with con
ventional gauges (e.g., NSE close to 1), there are non-negligible peak- 
flow and volumetric errors during flood events. More specifically, the 
radar-driven discharge estimates are accurate during low flows but 
underestimate during high flow events. Prior studies (i.e., Harpold et al., 
2006; Hauet et al., 2018) have recommended the use of two k values to 
represent base-flow and high-flow conditions. Lower k values are rec
ommended for base flows when the roughness of the stream bed has 
more effect on the surface velocities. At high flows, the roughness from 
the bed materials is less influential on the surface water velocities. So, in 
the following, we explore the optimization of two k values for each site, 
applied in a global sense. The approach adopted herein is to 

simultaneously quantify the event-based hydrograph errors and also 
consider the accuracy of the discharge estimates for the entire time 
series. 

Table 5 shows the global k values that maximize the multi-objective 
function for each collocated station. For all the stations, the results are 
improved due to double kg-value optimization. For single-kg optimiza
tion, kg varies between 0.78 and 0.91 while for double-kg, it varies be
tween 0.75 and 0.96. In general, the highest Ψ values are obtained for 
double-kg optimization, although the relative differences between the 
results for two different kg values are very small. Fig. 7 shows scatter 
plots of the radar-estimated and measured discharge from the collocated 
stations, similar to Fig. 5. The radar-estimated discharges in Fig. 5 are 
using the global k values of 0.85, while Fig. 7 shows the values for the 
optimized single- and double-kg values. The values yielded from the 
double-kg scheme are closer to the diagonal for all three stations. This 
applies to both high and low flows. 

For Cherry Creek, the optimized single kg value (0.78) is found to be 
less than the default one and it reduced the VE and PE error by almost 
4% with an increase in the NSE score. For double-kg optimization, the 
threshold depth limit differs by only 0.12 m from the recommended 
value (2 m) by Hauet et al. (2018). For the kg values, the higher one 
(0.89) is very close to their recommended value of 0.9, whereas the 
lower one (0.75) slightly deviates from the recommended value of 0.8. 
The VE error is almost halved and PE is also reduced by 4%. Because the 
total number of events is 26 for Cherry Creek, this is a substantial 
improvement in hydrograph errors and therefore, these kg values can 
represent the whole timeseries well. 

As for Mill Creek, the single kg value (0.83) is slightly lower than the 
default 0.85, and the NSE, VE, and PE scores do not change that much 

Fig. 5. Scatter plots of discharge (in m3 s− 1, or cms) as measured by a conventional station and the stream radars at (a) Mill Creek, (b) Cherry Creek, and (c) Walnut 
Gulch using a default kg coefficient of 0.85. 
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from the results found with the default. However, the double kg value 
provides higher NSE score as well as lower VE and PE scores. The 
threshold of depth limit (1.9 m) is only slightly lower than the recom
mended 2.0 m threshold. The lower kg value is very close to 0.8, while 
the higher kg value is 0.96. 

For Walnut Gulch, the optimized, single-kg value (0.91) is similar to 
the recommended value (0.9) by Hauet et al. (2018). However, the 
event-based errors do not change that much from the default kg-derived 
errors. For double-kg optimization, the kg value is quite similar (0.85) to 
the default one when the depth is less than 0.9 m, and for greater depths 
the optimized kg value is found to be 1.0. With the use of these two kg 
values, VE becomes less than 1%, PE is almost halved and NSE ap
proaches 1.0 (0.979). With the increase of water level, channel bed 
roughness in a concrete flume is expected to have less effect on mean 
channel velocity and therefore, a kg value close to 1.0 for depths above 
0.9 m is physically realistic. 

The prospects for using the sensors to quantify discharge on previ
ously ungauged basins is promising. Our results indicate that the use of a 
single, default kg value of 0.85 will yield NSE values greater than 0.9 
indicating very low error covariance. There is some modest benefit with 
the optimization approach in reducing the event-based peak-flow and 
total volume errors, which requires in situ measurements not unlike the 
need to establish a rating curve in conventional gauging. However, the 
next section explores the use of the stage and velocity measurements 
with no in situ measurements required a priori. 

3.3. Early detection of flooding events 

One objective of the stream radar units is to assess the capability of 
detecting rapid-onset flooding events in ungauged basins where there 
are vulnerable assets downstream. One such setting is the Falls Creek 
stream radar placed upstream from a camp near Davis, Oklahoma 

Fig. 6. Hydrographs of radar-measured and conventional discharge estimates (in m3 s− 1, or cms) for flooding events at (a, b) Mill Creek, (c, d) Cherry Creek, and (e) 
Walnut Gulch using a default kg coefficient of 0.85. 
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(Gourley, 2017). The camp hosts as many as 7500 children, teenagers, 
and staff at a given time during the summer months. On 18 June 2015, 
the region was struck by heavy rainfall (up to 800 mm) from a re- 
intensifying Tropical Storm Bill. In the camp, a bus was submerged 
and some campers were isolated for more than a day. In coordination 
with the camp director, the unit was installed on the stream upstream 
from the camp in March 2017 with the intention to provide early 
alerting. The datalogger nominally logs data every 10 min and transmits 
them every hour. The datalogger was initially programmed with sub
jective alert thresholds for stage exceeding 1.22 m or velocity exceeding 
1.22 m s− 1. When the stage or velocity exceeds the alert threshold, data 
are logged and transmitted every 5 min. Note that this frequency can be 
increased to data logging and transmission every 1 min when in alarm 
status. On 19–20 May 2017, severe weather affected the region resulting 
in a tornado warning issued by the local National Weather Service 
forecast office and heavy rainfall rates over the basin. The time series 
plot of radar-measured surface velocity and stage in Fig. 8 indicates the 
velocity exceeded the alert threshold at 0300 UTC and the stage 
exceeded its threshold at 0315 UTC. The rate of the river stage increase 
was 2.57 m hr-1. Interestingly, the velocity first exceeded the alert 
threshold and preceded the associated rise in stage by approximately 30 
min. This offset in the rising limbs of the velocity and stage hydrographs 
is attributed to a celerity effect caused by inertial accelerations and/or a 
pressure gradient from a non-negligible slope in the water surface. In 
fact, the stage-discharge hysteresis is discussed in detail in Muste et al. 

Table 5 
Results on multi-objective function optimization for the three stream radars that 
are collocated with conventional gauges. The best value for each metric is in 
boldface.  

Station Number of 
events 

kg value Ψ NSE VE 
(%) 

PE 
(%) 

Cherry 
Creek 

26 0.85 (default)  0.883  0.925  13.22  14.29 
0.78  0.912  0.939  9.57  10.88 
0.89 for stage 
> 1.9 m and  

0.75 for stage 
≤ 1.9 m  

0.923  0.949  7.56  10.43 

Mill 
Creek 

4 0.85 (default)  0.872  0.931  10.80  20.73 
0.83  0.878  0.929  9.25  20.20 
0.96 for stage 
> 1.9 m and  

0.81 for stage 
≤ 1.9 m  

0.901  0.958  8.15  17.17 

Walnut 
Gulch 

4 0.85 (default)  0.943  0.976  5.78  9.04 
0.91  0.954  0.989  6.20  6.58 
1.00 for stage 
>0.9 m and  

0.85 for stage 
≤ 0.9 m  

0.979  0.998  0.70  5.40  

Fig. 7. Scatter plots of discharge (in m3 s− 1, or cms) as measured by a conventional station and the stream radars using the single- and double-kg optimization 
schemes at (a) Mill Creek, (b) Cherry Creek, and (c) Walnut Gulch. 
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(2020). Unsteady flow conditions arise when the stage varies rapidly 
during events that cause substantial slopes in the water surface relative 
to the channel bed slope. Situations of extreme rainfall falling on rela
tively flat terrain can yield the hysteretic behavior. From analytical 
considerations, Muste et al. (2020) also show that a direct manifestation 
of unsteady flows is phase sequencing between the time series of ve
locity, discharge, and stage, in that order. This phase sequencing has 
rarely been reported in field measurements (Rowinski et al., 2000). 
Given the early arrival of the velocity wave, the stream radar combined 
with the alerting features of the data logger enabled more timely iden
tification of an impending, rapid-onset flooding event downstream. 

Following the event, the project team visited the radar to survey 
high-water marks and assess the condition of the stream radar (Fig. 2j). 
The stream had risen to the height of the bottom of the unit itself. Upon 
inspection, it was discovered that despite the damage that was incurred 
to the radars’ housing, the waterproofing of the individual radars in the 
unit succeeded so that they continued to operate throughout and after 
the event. Nevertheless, debris flowing down the stream impinged upon 
the supporting cables causing great tension on the housing and resulted 
in the damage shown in Fig. 9. The mounting was subsequently fortified 
to prevent stress on the housing in the future, and the unit was raised 
from its original position. Furthermore, the datalogger was programmed 

to alert on the following thresholds: 0.91 m, 0.91 m s− 1, 1.52 m, 1.52 m 
s− 1, 2.13 m, 2.13 m s− 1. If any of these thresholds are exceeded, then the 
data logging and transmitting frequency is increased to 5 min and SMS 
alerts are sent to local stakeholders. This event demonstrated that a 
stream radar unit could be used as an indicator of flash flooding at an 
ungauged, vulnerable location without the need for cross-section sur
veys, in situ measurements for developing the rating curve, or even 
establishment of bankfull flooding thresholds. Moreover, the real-time 
capabilities of data delivery and SMS alerting enabled the measure
ments of surface velocity and stage to be useful without the need for 
estimating discharge. In fact, it could be argued that these variables lend 
themselves to be more understandable and thus useful to stakeholders. 

4. Discussion and Conclusions 

To evaluate the effectiveness of remote-sensing technologies in 
noncontact measurement of stream variables (water level and surface 
velocity), eight stream radars have been installed at high-priority loca
tions across the United States. The radars are mounted on bridges, cul
verts, and cables and have provided measurements for at least 1 year 
with a temporal resolution of 5–10 min. The eight streams represent a 
variety of hydrologic, hydraulic, and hydroclimatological characteris
tics, and three of them are collocated with conventional streamgauges. 
This study is part of the Automated NonContact Hydrologic Observa
tions in Rivers (ANCHOR) project and aims to identify and characterize 
errors in the raw measurements, to optimize correction factors so the 
data can be used to estimate discharge, and to assess whether the real- 
time transmission of alerts based on stage and surface velocity mea
surements can be useful in an early alerting context. 

Potential biases were assessed on stage measurement due to diurnal 
temperature changes causing expansion and contraction of the sup
porting bridges, cables, and culverts. For bridge- and cable-mounted 
systems, these stage measurements would be biased in direct correla
tion with temperature. In the cases of bridges and cables, the sensor 
could sag closer to the water surface giving the impression of an increase 
in stage. The opposite could occur with the culvert-mounted units. We 
compared stage data from the stream radars to observations from 
collocated, conventional bubbler streamgauges at Cherry Creek, Colo
rado, and Mill Creek, Oklahoma. These independent USGS streamgauges 
also showed a diurnal fluctuation in stage, which is attributable to 
outdoor water uses during the summer months. The stream radar had 
the same fluctuations as the USGS observations at Cherry Creek and had 
about 1 cm more variation than the USGS stage measurements at Mill 
Creek. It is difficult to quantify the uncertainty in stream radar stage 
measurements caused by thermal expansion of the supporting structures 
when water is present in the channel. The coefficient of volume 
expansion with water is approximately six times larger than with either 
steel or concrete. And, as we saw in our analyses, outdoor water uses can 
result in actual diurnal fluctuations in stage. Without a detailed analysis 
of the thermal properties of the culverts, bridges, and cableways, it is 
difficult to definitively quantify the effect of thermal expansion on stage 
at all sites. However, stage variations were assessed at Walnut Gulch, 
Arizona, when the concrete flume was completely dry. The maximum 
temperature-induced stage change was found to be 2 cm at this site, and 
the other collocated sites showed that the stage variations were not 
greater than this amount. Lastly, when estimating discharge, surface 
velocity retrievals during low-flow periods must consider ambient wind 
velocities as they can become biased. 

Discharge comparisons at the collocated stations show that the use of 
a kg value of 0.85 to convert surface velocities to represent a mean, 
channel velocity yield NSE values greater than 0.9. During substantial 
flooding events, peak-flow values are underestimated. The concept of 
using double-kg values, which is normally applied to convert surface 
velocities to depth-averaged velocities for different stages and hydraulic 
conditions by Hauet et al. (2018), is a valid approach to get accurate 
results across the spectrum of flows including low flows and floods. With 

Fig. 8. Hydrographs of radar-measured stage (solid) and surface velocity 
(dashed) for a flash flooding event at the Falls Creek site near Davis, Oklahoma. 
The initial alert thresholds for both stage and velocity that was used for this 
event is shown in red. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Photographs of the Falls Creek, Oklahoma, stream radar following the 
17 May 2017 flash flooding event. 
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the optimized kg values, the statistical metrics indicate that the radar- 
based discharge estimates can be as accurate as in situ, conventional 
streamgauges, and have acceptable event-based hydrograph errors (less 
than 10% volumetric and peak-value error) during floods. Nevertheless, 
the kg-value optimization requires a collocated, conventional stream
gauge, which comes with the costs of regular visits to establish the stage- 
discharge rating curve. Our results at three sites reveal that the use of a 
single, default k value of 0.85 to be considered as a global k value yield 
NSE values greater than 0.9, indicating the degree of accuracy that can 
be obtained without the requirement of in situ measurements of velocity 
profiles. 

The use of the single, default k value, nominally reported to convert 
surface velocities to depth-averaged values, applied here to represent 
the mean channel velocity may be a bit fortuitous for the three collo
cated sites. One would expect lower global k values to represent mean 
channel velocity compared to the local k values reported in the litera
ture. In the case of Walnut Gulch, Arizona, the concrete flume represents 
a very smooth channel so that the local k value can approximate the 
mean across the cross-section, which agrees with results reported in 
Welber et al. (2016). In the case of Cherry Creek, Colorado, the unit was 
situated on a bridge approximately 6 m above the water surface. Given 
the 12̊ beamwidth of the Doppler radar and 56̊ off-nadir pointing angle, 
the radar illuminates more than 50% of the stream’s width. This means 
that the inferred global k includes a representative distribution of sur
face velocities across the stream, and thus can approximate the local k 
values reported in the literature. In the case of Mill Creek, Oklahoma, the 
radar was situated at a location in the channel during base-flow condi
tions where the largest surface velocities were expected (see Fig. 2d). 
However, the channel is not as straight as desired at this location, and it 
is plausible that the radar measures surface velocities that are not the 
maxima along the cross-section; this results in the retrieved velocity to 
approximate a mean surface velocity rather than the maximum. Con
siderations of the radar siting that include the area illuminated in the 
stream affect the quality of the discharge estimates. 

In this study, five out of the eight ANCHOR stream radars are situated 
over ungauged streams. These serve different purposes including low- 
flow monitoring of a spring-fed creek for sustaining endangered spe
cies on Sessom Creek, Texas, monitoring high flows that affect bridges 
carrying trains (Austin South and Austin North, Texas), and detecting 
flash floods above vulnerable camping areas (Falls Creek, Oklahoma). In 
the latter case, it was demonstrated that the sensors are capable of 
detecting surface velocities and river stages that pose hazards to life and 
property. There was a notable phase sequencing between the surface 
velocity and stage, indicative of unsteady flows caused by a large slope 
in the water surface relative to the mild channel bed slope. It turns out 
this observation would be valuable in an early alerting context. Alert 
thresholds based on stage and velocity values can be subjectively 
determined for a given site, input to the datalogger, and then used to 
increase the data logging and transmitting frequency and to alert local 
authorities and stakeholders by sending them SMS text messages. 
Further, the early alerting capabilities do not necessarily require 
detailed cross-section surveys or optimized k values to estimate dis
charges; the measurements of stage and surface velocity are sufficient. 

Based on experience gained throughout the ANCHOR project, we 
provide some insights that can maximize data quality and quantity. 
Siting an instrument is key to its success. The channel would need to 
have uniform, relatively straight flow at the chosen site and a stable 
cross-section. Further, a site would need to have adequate cellular 
network coverage for transmitting the data. There are instances in which 
radio transmitters are being used to send the signal up to a ridge location 
where there is better cellular data coverage. The batteries are charged 
with a solar panel, so having good visibility toward the equator im
proves the power budgeting. Optimal siting of the units also needs to 
consider the degree of public access to reduce the instances of 
vandalism. In closing, this study provides experiences gained at diverse 
locations and will hopefully motivate future studies and efforts to 

promote additional sensing of earth’s freshwater resources. 
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