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ABSTRACT 

The general framework of the present paper is the modeling 
of stone work, subject to dynamic loads. In this study, a 
masonry structure is considered as a collection of rigid blocks, 
linked together by Coulomb’s type friction laws. We define on 
such a granular medium, a stress tensor and a macroscopic strain 
tensor, on an elementary cell. The definition of these tensors 
allows us to get, locally, an average information on this granular 
medium. 

INTRODUCTION 

Unlike continuous media, a discrete medium is 
characterized by the existence of contacts or interface between 
the discrete elements, constituting the system. The modeling 
using discrete elements, describes the contact forces and the 
displacements of each of these grains. The calculation algorithm 
is incremental. From the detection of contacts, are determined 
the displacements and contact forces at the end of each time 
step, for all the grains. At the following step, new positions are 
updated, new contact forces computed, and the process goes on. 
This general principle is the basis of the calculation using 
discrete elements. We decided to follow the works of M. JEAN 
and J.J. MOREAU [1] , embedded in the LMGC90(*) code. 

First, an average stress tensor is defined on a cell, 
averaging the contact forces applied on each grain. Then, an 
average strain tensor is defined, using the cinematic description 
obtained from the discrete modeling of the grain system. 

As an example, we present, as a test, the 2D results, 
obtained from LMGC90, on a 51 rectangular block wall, each 
block being 30 cm long, and 20 cm high. We then present the 
behavior of a segment of the Arles aqueduct, (248 blocks in the 
walls, and 98 blocks in the arch). 

NOMENCLATURE 
Granular materials, stress, strain. 

I- STRAIN TENSOR IN A CELL OF THE GRANULAR 
SAMPLE : 

The definition of a strain tensor remains a subtle notion in 
the case of a collection of rigid grains, each of the grain being 
subject to no strain. The aim of this tensor or indicator, is to 
describe the re-arrangement of the blocks versus time. We can 
get an information about the eventual sliding between grains, 
using the deviator component of this tensor. The volumetric 
strain, reflects the opening of joints and extension of the sample. 

BAGI et al[3] chose a purely geometrical definition of this 
tensor, consisting in the definition of strain from the 
displacement of the center of gravity of the grains. Massao 
SATAKE [4] considered the same definition but adopted a 
Dirichlet’s tessellation of the granular collection. 

Fig. I.1 : Deformation cell definition 
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The cell being defined as shown on fig. I.1, the average 
speed gradient is computed using the following formula : 

( ) Ω∫=
Ω

dv
V

1
v j,ij,i (1) 

The calculation of the strain tensor uses the triangles of Gi 
summit, and opposed edge GlGk.  

The speed of a point of the triangle is given by the 
following linear interpolation : 
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The tensor of strain speeds is the symmetrical part of the 
speed gradient : : 
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Once calculated for each triangle, the strain speed, the total 
strain speed of the gauge can be written as follows: 
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II- STRESS TENSOR FOR A GRANULAR MEDIUM : 

Most authors, interested in the definition of stress tensors in 
a granular medium, have developed their tools in a quasi-static 
case.[1] [4] [6] [9]  

In the case of dynamics and in absence of rotations, the 

tensor of average constraint defined on the grain S of volume Ω 
is written as follows [1],[11] : 

( )∑ γ−
Ω

=σ
α

ααα
iiijiij mxfx
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   (6) 

where 
α
i

f is the external force applied on point
α
i

x and γi 

the acceleration of the grain i de masse mi. 

In this case where the external power equals the internal 
power, the internal momentum equals the momentum of the 
externals forces. Without any rotation, this tensor is 
symmetrical.  

The external forces, are reduced to contact forces and dead 
weight. The tensor is defined taking as a reference whatever 
point in the space. 

Lets consider, here under (fig. II.1) , a grain S in contact 
with another grain S' at point I  

Fig. II.1 : Stress computing Principle 

The stress tensor, computed with respect to point O, can be 
written as follows : 

( ) 







γ⊗−⊗+⊗

Ω
=σ

→→→→→→

OGmPOGROI
vol

1
(7) 

And, because of the fundamental principle of dynamics, 

→→→

γ=+ mRP , the choice of the origin does not matter, and 

then, the expression of this average stress tensor can be reduced 
to : 
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The dynamic term due to rotations destroys the symmetry 
of the stress tensor [4]. 

In the rest of the present paper, we will be in the case of 
small rotations, so that the symmetry of the stress tensor is 
ensured, and so that the stress tensor expression (8) can be used. 

Equation (8) gives us the expression of a stress tensor on a 
grain. Using the additive property of this tensor, in the case of a 
discrete collection of grains, one can define the stress on the cell 
defined on fig. I.1. 

The stress tensor, on this cell, will then be written as 
follows: 

( )
grain

1n..1jauge
jauge V.

V

1

c
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where nc is the number of grains in contact with the central 
grain S. 

For this stress tensor, one can determinate the associated 
Eigen values and vectors, giving respectively the principal 
stresses and associated principal stress directions. 

III- APPLICATION EXAMPLES : 

III-1-Modeling of a wall under periodic solicitation : 

The preceding definitions of the strain and stress tensors 
were introduced in the LMGC90 code. The following results 
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correspond to a wall, composed of 248 rectangular blocks, 30cm 
long x 20cm high, laid on the ground. All block and the ground 
are considered rigid, and the ground has a sinusoidal uniform 
movement in the horizontal direction. The sinusoidal speed of 
the wave is applied with an amplitude 1m.s

-1
, a frequency of 2 

Hz, for a duration of 1 second. 
As the ground starts moving, the triangulation described on 

fig.III.1 is subject to deformation. Then, maps showing different 
levels of the invariant of the strain were produced. We first 
plotted the  instantaneous volume strain versus time. This 
invariant gives us information about the eventual dilation 
happening in the structure. More over, using the color 
distribution, we get an information about the localization of 
strains and joints openings (fig. III.2). 

We then plotted the deviator part of the cumulated strain. 
This parameter shows us the relative importance of the sliding 
phenomena, happening in the structure (fig. III.3). 

Fig. III.1 : The wall triangularisation  
and the cell definition 

On those figures, one can observe that the mesh 
deformation occurs with both joint openings and the volume 
dilatation of the structure. 

Figure III.2 shows that the localization of deformations 
corresponds to the important opening of joints. 

Last, one can say that the instantaneous volume 
deformation, during this loading periodical process, is not an 
increasing function. This confirms the phenomenon of opening 
and closing of joints. 

Similarly, stress contours have been produced. Fig. III.4 
presents the evolution versus time, of the spherical invariant of 
the stress tensor, on the cell. Fig. III.5 shows the deviatory part 
of the stress tensor. 

Fig. III.2 : The instantaneous 
 volume strain at t = 0.1 second 

Fig. III.3 : The deviatoric component  
of the strain tensor at t = 0.1 second 

Fig. III.4 : The spherical component  
of the stress tensor at t = 0.1 second 

deformation cell 
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Fig. III.5 : The deviatoric component  
of the stress tensor at t = 0.1 second 

III-2- Modeling of a stone arch submitted to a relative 
settlement : 

In this part we consider a stone arch composed of  98 rigid 
blocks. The calculation is usually done by Non Smooth Contact 
Dynamics Approach [1] programmed in LMGC90 software. 
The friction coefficient between different blocks is equal to 0.6. 
The friction coefficient at the interface between the ground and 
the structure is also equal to 0.6. The density of the stone blocks 
is equal to 2500kg.m

-3
 and the ground is supposed rigid and has 

a density of 1650kg.m
-3

.  
The stone arch is submitted to a relative settlement as 

shown in fig.III.6. The right pile is subjected to a vertical 
velocity equal to –1cm.s

-1
. 

Fig. III.6 : Arch geometry and solicitation definition 

The figures below show the different invariants of the two 
tensors at t=5seconds. We can notice that a great part of the left 
pile is under the highest level of a volume strain. The most 
solicited blocks are those who form the arch of the bridge. They 
are more compressed and the sliding ratio (Fig.III. 10) is higher 
for them than for the other blocks. 

Fig. III.7 : The instantaneous 
 volume strain at t = 5 seconds 

Fig. III.8 : The deviatoric component  
of the strain tensor at t = 5 seconds 

Fig. III.9 : The spherical component  
of the stress tensor at t = 5 seconds 
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Fig. III.10 : Fig. III.5 : The deviatoric component  
of the stress tensor at t = 5 seconds 

IV- CONCLUSION : 

The approach, presented in this paper, allows us to draw 
preliminary conclusions on the dynamic behavior of masonry 
structures. It is a first step of a phenomenological approach, to 
study in more details, the mechanisms involved in this type of 
structures. 

The pros of such an approach are that one can get both 
information about the discrete and continuous nature, the local 
and global evolution of the structure. The main difficulty of this 
type of approach is that, for important rotations, the symmetry 
of the stress tensor cannot be obtained. 

A representation of the load level on a grain, with respect to 
a given failure criterion, is sufficient, as a first step, to conclude 
on a possible failure. The more heavily loaded grains could be 
isolated from the rest of the structure and studied using the 
classical framework of continuous media mechanics. This 
engineering type approach is used for the analysis of engines 
mechanisms, in which solids can first be considered as rigid, 
and where deformations are then considered, in a basis 
associated with the rigid solid. 

The following steps of the work to come will deal with the 
exploitation of the results of the developments described above. 

We will try and define adequate approximations to obtain a 
generalization of the stress tensor, in order to be able to deal 
with the behavior of masonry discontinuous structures, under 
more general dynamic loading conditions. The modeling of the 
complete Arles aqueduct, at the Vallon des Arcs will be 
completed, in order to compare different failure hypothesis, 
formulated by archaeologists. 
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