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We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing
particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws
of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its
absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose
reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration.
The reflectance of an infinite particle medium is derived from a description of multiple reflections and trans-
missions between many superposed particle sublayers. When the binder has a refractive index different from
that of air, the medium’s reflectance factor accounts for the multiple reflections occurring beneath the
air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the
refractive indices and the particle absorption coefficient, are examined.

1. INTRODUCTION

Many opaque objects are composed of a homogeneous me-
dium in which particles of a distinct refractive index are
responsible for the scattering of light. The prediction of
their color requires establishing the relationship between
their reflectance spectrum and the physical properties of
their constituting elements. Once every significant
parameter of the model has been determined, the spectral
reflectance of the objects can be predicted given the
conditions of observation and illumination.

The reflectance of a thick particle medium depends on
the optical properties of the binder as well as the optical
properties, size, shape, relative locations, and concentra-
tion of the particles. This high number of relevant param-
eters gives rise to a large number of models, which are
partitioned into the categories of single and multiple scat-
tering models. The first ones focus on the interaction of
light with a single particle. They enable the complete de-
scription of diffusion in particle media of weak concentra-
tion. When the particle concentration is higher, multiple
scattering models describe the succession of events under-
gone by the incident light. They embed parameters repre-
senting averaged physical phenomena, e.g., backscatter-
ing and absorption, which are either determined by
measurement or related to parameters issued from single
scattering models.

Mie’s theory describes the scattering of waves by a
single particle with a simple shape, e.g., a sphere, for any
particle size [1,2]. However, as the particle size becomes
much larger than the wavelength of light, the incident
wave is modeled as a collection of light rays, and Mie’s
model evolves toward a model of geometrical optics. Scat-

tering involves two types of light rays: Those that hit the
particle, which are subject to reflections, refractions,
and/or absorption according to the laws of geometrical op-
tics and those that pass very close to the particle and are
diffracted [3]. At a large particle size, diffraction becomes
insignificant since it represents a small quantity of light,
proportional to the particle radius, compared to the quan-
tity of light hitting the particle, proportional to the square
of the particle radius.

In most multiple scattering models, the particle me-
dium is assumed to be homogeneous with a random lay-
out of the particles. According to a first approach, quali-
fied as the continuous modelization, an infinitesimal
volume element is selected within the homogeneous scat-
tering medium, and the flux variations are described by
equations. The radiative transfer equation provides an
orientational description of the flux variations for every
incoming and outgoing direction [4]. Various methods
have been proposed to solve this integrodifferential equa-
tion [5,6], but their computation is tedious and time con-
suming. In the so-called “N-flux models” [7], the flux
variations are described for a set of N equal solid angles
filling the space by a system of N differential equations.
In the case of very densely populated media, only two
solid angles are considered, i.e., the upper and the lower
hemispheres [8] and a system of two differential equa-
tions describes the variations of two opposite diffuse
fluxes propagating upward and downward. This continu-
ous two-flux model is known as the Kubelka—Munk model
[9,10]. Its differential equation system has analytical so-
lutions giving closed-form expressions for the reflectance
and the transmittance of a thick particle layer [10,11].



However, because the flux variations are described at the
infinitesimal scale, the continuous models are not directly
compatible with a single scattering model, where scatter-
ing is described at the noninfinitesimal scale of a particle.
As an alternative, multiple scattering can be modeled
within a volume element or sublayer having approxi-
mately the average size of the particle (“particle volume
element” or “particle sublayer”). Corresponding models
are qualified as discrete models. A discrete two-flux model
describes the multiple scattering in terms of multiple re-
flections and transmissions between superposed sublay-
ers. Classical formulations have been proposed by Stokes
[12], Kubelka [13], and Kortiim [14]. Recent contributions
derive an equivalent formulation on the basis of random
walks or Markov chains [15-17]. Both the continuous and
the discrete two-flux models rely on the same assumption,
i.e., a sufficiently high degree of scattering to ensure the
uniform angular distribution of the diffuse light.

The first reflectance models for particle media explicitly
including a modelization of single scattering by large par-
ticles were proposed by Stokes [12] and Bodo [18]. The re-
flectance of the particle medium was developed according
to the discrete two-flux model with the particle sublayer
reflectance and transmittance derived from the single
scattering model. On the same basis, Melamed [19] in
1963 presented a model for powders and pigments, later
refined by Mandelis et al. [20] and recently extended by
Garay et al. [21] to the case of nonspherical particles.
Melamed’s major contribution concerns the modelization
of the particle sublayer reflectance and transmittance.
The incident flux, assumed to be diffused after its first
penetration into particles, is subject to multiple events of
reflection, transmission, and/or absorption inside each
particle. The total outgoing flux is calculated and then de-
composed into backward, forward, and sideward compo-
nents. These three components are combined to give the
reflectance and the transmittance of a particle sublayer.
Due to the sideward component, an attempt is made for
modeling lateral scattering within the particle medium.
In the calculation of the outgoing flux, the events of re-
flection, transmission, and absorption are represented by
averaged attenuation factors, implicitly assuming that
none of these events modifies the Lambertian angular dis-
tribution of light. This approximation is suitable for the
case of nonideal particles, e.g., with random shapes or
rough interfaces, but it fails when particles are spherical
and smooth because of the angle-dependence of Fresnel’s
coefficients and of Beer’s attenuation law. During the past
decade, Shkuratov and coworkers [22,23] proposed a
slightly different model in the domain of astrophysics to
interpret the scattering of light by regolithic media on lu-
nar and planetary surfaces. Like Melamed, Shkuratov et
al. derived the total flux scattered by a single particle
from a description of multiple reflections, transmissions,
and absorptions of Lambertian light. Afterward the total
scattered flux is decomposed into a backward component
and a forward component. These two components are cal-
culated according to the following simple model: The rays
reflected on the exterior side of the particle are considered
as backscattered when they form an acute angle with the
incident ray; their contribution to the backward compo-
nent, given by Fresnel’s reflectivity, takes into account the

ray orientation. The rays crossing the particle without in-
ternal reflection are assumed to be scattered forward, and
the rays undergoing internal reflections within the par-
ticle are assumed to equally contribute to the forward and
backward components. Due to its simplicity, this model
does not render well the influence of the particle refrac-
tive index and the absorption-dependence of the back-
ward component (see Section 9).

To account for the particle concentration into the par-
ticle medium, a “shadowing ratio” is introduced that cor-
responds to the average probability for the diffuse inci-
dent light to strike a particle. Thus, the particle sublayer
reflectance and transmittance are combinations of the
particle backward and forward components and of this
shadowing ratio. The global reflectance of the particle me-
dium is derived from the particle sublayer reflectance and
transmittance according to the classical discrete two-flux
model.

The model we propose relies on the lines of thought of
the model of Shkuratov et al., but with the intent to more
rigorously apply the laws of geometrical optics with re-
spect to the ray orientations. We introduce a 3D-vector
model giving both the direction and the attenuation of the
scattered rays depending on their orientation and their
hitting position on the particle. The backward and for-
ward components of the scattered flux are combined to-
gether with the shadowing ratio of Shkuratov et al. to
give the reflectance and the transmittance of a particle
sublayer. Then, using the classical discrete two-flux model
with the particle sublayer reflectance and transmittance,
we determine the reflectance of a semi-infinite particle
medium. When the particle medium is observed from a
medium different from the binder, e.g., air, we have mul-
tiple reflections beneath the air—binder interface. We give
the reflectance factor of the interfaced particle medium
according to the observation geometry.

This paper is structured as follows. We first recall basic
notions of geometrical optics in Section 2. The 3D-vector
model is presented in Section 3. It is used to determine
the total scattering (Section 4) and the backscattering
(Section 5) of diffuse light by a single particle. The reflec-
tance and transmittance of a particle sublayer are pre-
sented in Section 6. The discrete two-flux model is used in
Section 7 to obtain the reflectance of an infinite particle
medium. The reflectance factor accounting for the binder-
air interface is given in Section 8. In Section 9, we develop
elements of comparison between the model of Shkuratov
et al. and the present model. Conclusions are drawn in
Section 10.

2. LAWS OF GEOMETRICAL OPTICS

A medium is perfectly clear when it is homogeneous, iso-
tropic, nonscattering, and nonabsorbing. It is character-
ized by its refractive index having a real value. A trans-
parent medium is nonscattering but absorbing. It is
characterized by its wavelength-dependent complex re-
fractive index 2(\)=n(N\)(1+ix(\)), where n(\) is the real
refractive index and «(\) is the attenuation index [[2], p.
219]. The attenuation index characterizes the attenuation
of light by the medium, i.e., its absorption. It is related to
the linear absorption coefficient «(\) [[2], p. 219]



47n(N) k()
)= ————. (1)

According to Beer’s law [[2], p. 219], the light traversing a

path of length d in a medium with absorption coefficient
a(\) is attenuated by the wavelength-dependent factor

t(\) =e oW, (2)

Alight ray striking a smooth interface between two media
¢ and j, having distinct complex refractive indices 7; and
7, is reflected and refracted. According to Snell’s laws, the
incident, reflected, and transmitted light rays belong to a
same plane, called the plane of incidence, which also con-
tains the normal of the interface at the point of impact of
the incident light ray. The incident angle and the reflec-
tion angle are equal. The refraction angle 6; in medium j
is related to the incident angle 6; in medium ¢ according to

n;sin 6;=n;sin 6. (3)

The flux fractions being reflected and refracted are given
by Fresnel’s formulas. They depend on the complex re-
fractive indices of the two media as well as the angle and
the polarization of the incident light. In contrast to metals
whose attenuation index is high, transparent media have
a very low attenuation coefficient. The absorption occurs
in the transparent medium volume but not at its inter-
face; the Fresnel coefficients can thus be approximated to
depend only on the real refractive indices. Concerning po-
larization, superscripts s and p denote the electric fields
being, respectively, perpendicular and parallel to the
incidence plane. The reflectivity of the interface between
media ¢ and j, with parallel polarized illumination from
medium ¢ at angle 6;, is

tan®(6; - 6))

N0 = a0y )
and its transmittivity is
T5(6) =1 - Ri(6). (5)

The reflectivity for identical illumination with a perpen-
dicular polarization is

sin?(6, — 6,)

Ri(6)=——7%—— 6
5% sin?(, + 6)) ©

and its transmittivity is
T5(6;) =1-Rj(6;). (7

In the following sections, we consider natural incident
light, i.e., incoherent and unpolarized incident light de-
noted by superscript u. Natural incident light is modeled
by two components for parallel and for perpendicular po-
larization [2]. The two components have equal amplitude
and are reflected and/or transmitted, possibly multiple
times, independently of each other. The different reflec-
tions and transmissions of the parallel and perpendicular
components are quantified by the reflectivities and trans-
mittivities given by Eqgs. (4) and (5) and by Eqs. (6) and
(7), respectively. An observer perceives the average of the
two polarization components. For natural light reflected
by a single interface, the corresponding reflectivity is

RY(6) = 5(R5(6) + RE(6). )

To simplify the notation of the following equations, polar-
ization is not specified. Reflectivities and transmittivities
are simply noted as R;;(6) and Tj;(6).

When angles 6; and 6; are related according to Eq. (3),
we have

T;i(6;) =T;;(6,) 9)
and therefore
R;i(6)=R;(6,). (10)

If n;>n;, the light rays incident from medium j at an
angle 6; higher than the critical angle arcsin(n;/n;) are
totally reflected. Therefore, in that case

Ri(6)=1,

J

and
T;:(6)=0. (11

The reflectance of a flat interface illuminated by
Lambertian light is called diffuse reflectance. For an
illumination from medium i, it is derived from Fresnel’s
reflectivity according to [24]

/2
e J Ry(6)sin 26,46, (12)
6;=0

Since the energy is conserved at the interface, 1-r;; cor-
responds to the diffuse transmittance of the interface for
an illumination from medium {

(13)

When the interface is illuminated from medium j, its dif-
fuse reflectance and transmittance are noted as r;; and ¢,
respectively. Transmittances ¢;; and ¢; are related accord-

ing to [25]
tji = (ni/nj)ztij. (14)

From Egs. (13) and (14), we obtain the relation between
the diffuse reflectances r;; and r;;

1 —rji= (nl/nj)2(1—ru) (15)

3. DIFFUSE ILLUMINATION OF A
SPHERICAL PARTICLE

A spherical particle illuminated with Lambertian light
receives a collection of light rays that are reflected and
refracted at the particle surface. The direction and the
proportion of reflection and refraction for each incident
ray depend on their orientation in space and striking po-
sition on the particle. To precisely specify the orientation
and the striking position of rays, we introduce a 3D-vector
model. This model combined with the rules of radiometry
gives the flux received by the particle as well as the flux
reflected at its surface.

A. Three-Dimensional-Vector Model
The Lambertian incident light comes from the upper
hemisphere. It is composed of light rays whose direction is



specified by a unit vector L oriented “upward,” i.e., within
the upper hemisphere. The propagation direction is speci-
fied by the opposite unit vector -L. In the classical
Cartesian coordinates system (x,y,z), the coordinates of
vector L are

sin ¢ cos ¢
L= sin ¢sin ¢
cos

with 0=¢=7/2 and 0= ¢=27 (Fig. 1). However, due to
the azimuthal isotropy of spheres, we may only consider
light rays whose direction L belongs to the xz plane
(¢=0)

sin ¢
L= 0 |. (16)
cos

Light rays oriented according to vector L illuminate a
half-sphere inclined according to vector L (Fig. 1). The
point where a given L directed ray hits the particle is
specified by a unit vector G characterized by angles
(61, 1) in respect to L. Since G coincides with the normal
of the particle surface at the illumination point, angle 6;
formed by G and L is the ray’s local incident angle
(0=6,=m/2). Angle ¢ is the angle between G and the xz
plane (0= ¢; =2m). We consider a new orthogonal coordi-
nate system (x’,y’,z’), where the z'axis corresponds to
vector L and the y’ axis is identical to the y axis. In this
coordinate system, vector G has the coordinates

sin 6; cos ¢,
G = sin 01 sin ¢1 , (17)

cos 6;

and vector L has the coordinates

Light rays oriented
according to L

\ e
Z!

Fig. 1. Light ray coming from direction L hitting a surface
element dA located according to vector G. The bold half-sphere
represents the area illuminated by the L directed light rays.

(=)

L'=

(=]

(18)

=

To obtain the classical (x,y,z) coordinates of G, we apply
to the (x’,y’,z’) coordinates a rotation of angle —i around
the y axis

cos ¢ O sin ¢\ [sin 6; cos ¢
G-= 0 1 0

—siny 0 cos ¢ cos 0

sin 6; sin ¢,

cos ¢ sin 6; cos ¢ + sin ¢ cos 6

= sin 6; sin ¢ , (19)

cos ¢ cos H; — sin ¥ sin 6; cos ¢;

where the 3 X 3 matrix characterizes the rotation [26]. As
expected, the dot product L- G gives the cosine of the local
incident angle 6.

B. Diffuse Incident Flux

Let us consider a Lambertian light source of irradiance
E;. We calculate the corresponding flux ®; received by the
particle. Every light ray striking the particle corresponds
to a same radiance L;,=E;/m and therefore to a flux
element [27]

E;
d?®,(L,G) = —dA cos ¢;do, (20)
m

where dA=r2sin #;d6;d¢; is the elementary surface
illuminated by the light ray, r is the particle radius, and
dw=sin ydyd ¢ is the infinitesimal solid angle containing
radiance L;. Therefore,

E;
dzq)i(L,G) =—r%cos 0; sin 0;d6;d ¢, sin ydyd . (21)
o

The set of L directed light rays illuminating the particle
forms a flux element d®;(L). It is the sum of all flux ele-
ments d?®;(L,G) for 0=6;=7/2 and 0= ¢, =27. Then,
summing up the flux elements d®;(L) over the upper
hemisphere, i.e., for 0=¢=7/2 and 0= ¢=27, we obtain
the total flux @, received by the particle

E. 2m 72 2 /2
l
D, = r2—f f f f cos 6; sin 6;d#;d ¢,
T J ¢=0J y=0 | J ¢1=0 J 9,=0

X sin ydyd e = 27r2E;. (22)

C. External Reflectance

Let us now calculate the fraction of Lambertian incident
light that is reflected by the particle having a refractive
index ngy and being surrounded by a medium of refractive
index n;. According to Fresnel’s formulas, a fraction
R15(6y) of each incident flux element d?®;(L,G) is subject
to reflection. Therefore, the total flux ®, reflected by the
particle is



E. 2 /2 2 /2
‘I’r=’"2_J f |:j j R15(61)
T J g0 y=0 | 4 ¢,=0 J 6,20

X cos #; sin 01d61d¢1] sin ydyd . (23)

After simplification of Eq. (23), the reflected flux becomes

/2
&, =272E; f R15(60;)sin 26,d 6. (24)

01=0

The ratio ®,/®; corresponds to the diffuse external reflec-
tance of the particle ri5 that is identical to the diffuse
reflectance of a flat interface given in Eq. (12)

/2
ria= f R15(6,)sin 26,d6;. (25)
6,=0

The same expression for the reflectance of a spherical
interface was derived by Bohren and Huffman [28].

4. SCATTERING OF LIGHT BY A SINGLE
PARTICLE

According to the ray-optics model, the scattering of light
by a transparent particle is described in terms of ray mul-
tiple reflections and transmissions. Reflections occur at
the exterior and interior sides of the particle interface.
Transmissions occur through the particle interface and
through the particle medium with attenuation due to ab-
sorption. Let us first consider the case of directional inci-
dent light and then the case of Lambertian incident light.

A. Directional Nonabsorbance

A spherical particle of diameter d is surrounded by a clear
medium 1 of refractive index n;. It is made of a transpar-
ent medium 2 whose wavelength-dependent refractive in-
dex is ny(N)>nq(\) and whose wavelength-dependent ab-
sorption coefficient is a(\). When a light ray strikes the
particle surface, it is reflected and refracted according to
Snell’s laws. The incident ray, the reflected ray, and the
refracted ray as well as the particle surface normal all be-
long to the plane of incidence. Since the particle is a
sphere, the surface normal passes through the particle
center whatever the incident angle, and the plane of inci-
dence is an equatorial plane of the particle.

Let us call 6; the local incident angle of the ray on the
exterior surface of the particle. The reflection angle is
equal to 6;. The refraction angle inside the particle, 6,, is
deduced from Eq. (3). The refracted light ray is subject to
multiple reflections within the particle, all occurring in
the plane of incidence with a same angle 6, (Fig. 2). Be-
tween two internal reflections, the ray travels a distance
d cos 0 and is attenuated by a factor ¢ according to Beer’s
law [Eq. (2)]. This attenuation factor may be expressed as
a function of 6; according to Eq. (3)

t(6,) = p~ad cos Oy _ e—ad\fl—(nl sin Bl/nz)z. (26)

The directional nonabsorbance of the particle, Fg, is the
fraction of the incident element of flux that exits the par-
ticle without being absorbed. It is the sum of the different

Incident ray

T12(6,)75,(6,) “V‘
XRy1(0,)1(6,) \
L\

. R5(6))
-7

le(e])Tzl(e;)t(el) L,

Fig. 2. Multiple reflection of light within a spherical transpar-
ent particle of refractive index n, surrounded by a medium of
refractive index n;<ny. All light rays belong to a same plane
through the center of the particle.

exiting components featured in Fig. 2 expressed as the
following geometric series:

©

Fg(61) = Rq9(6y) + T12(91)T21(92)t(91)2 [Ro1(05)¢(6)) 1%
k=0

(27)

Reducing the geometric series and using Eqs. (5) or (7)
and Eq. (9), the directional nonabsorbance of the spheri-
cal particle becomes

(1= R15(61))%(6y)

Fg(61) =Rq9(6,) + 1-R15(6,)t(6y) '

(28)

B. Diffuse Nonabsorbance

The diffuse nonabsorbance corresponds to the fraction of
Lambertian incident flux ®; that is scattered, i.e., not ab-
sorbed, by the particle. The total flux ®; received by the
particle is given by Eq. (22). Let us again use the 3D-
vector model developed in Section 3 to calculate the scat-
tered flux ®g. Every incident light ray is specified by a
vector L for its direction and by a vector G for its hitting
position on the particle. It corresponds to a flux element
d2®;(L,G) given by Eq. (20). A fraction Fg(6;) given by
Eq. (28) is scattered, where 6; is the angle of incidence,
formed by L and G. The corresponding scattered flux is

d*0g(L,G) = Fs(6))d*®,(L, G). (29)

Following the same reasoning line as in Section 2 from
Eqgs. (20)—(22), the total scattered flux ®g is



E. 27 /2 27 /2
bg= rz—J f f f Fy(6,)cos 6, sin 6,
T J g0 J y=0 J ¢,=0 J 0,=0

Xsin lpdaldd)ldlﬂd(ﬁ

/2
= 2777'2Eif FS(Gl)sin 201(101 (30)
61=0

The particle diffuse nonabsorbance fg is given by the ratio
of scattered flux ®g to incident flux ®;

/2
fs= j Fy(6;)sin 26,d6;, (31)

0;,=0

which becomes, according to the expanded expression (28)
of directional reflectance and the defining equation (25) of

12

JW/Z (1= Ry5(61))%(6y) .
fs=r12+ —S1In 201(101 (32)

0,=0 1-R15(61)t(61)

The term (1-fg) corresponds to the particle’s diffuse ab-
sorbance. Its expression derived from Eq. (31) is equiva-
lent to the one derived by Mayer and Madronich [29] for
water droplets. In the case of perfectly clear particles
(a=0) there is no absorption, and all the incident light is
scattered, i.e., #(#;)=1 and fg=1.

5. BACKSCATTERING BY A SINGLE
PARTICLE

The reflection of light by a thick particle medium is due to
a combination of single scattering by each particle and of
multiple scattering between neighboring particles. As a
first step for describing multiple scattering, we introduce
an extension of the model presented in Section 4, where
only the light rays propagated into the upper hemisphere
are accounted for. The corresponding fraction of incident
light is called the backward component, noted as rg. It
may be expressed as a function of the particle nonabsor-
bance f;

T‘S=xfs, (33)

where x is called the backscattering ratio. The forward
component ¢g corresponds to the fraction of light scattered
forward

ts=fs—rs=1-x)fs. (34)

A. Backscattered Light Rays
Let us consider an incident light ray characterized by its
direction vector L and its position vector G. We call Ly
the exit direction of the Nth scattered rays, with
N=1,2,3,.... The angle from -L to Ly is called ™. We
can deduce from Fig. 2 that

oV =m7-26,, (35)

and the recursive formula

OV —gN-D =926, —7, N=1, (36)

where 6y=arcsin(n sin #;/n,) is the refraction angle of
the light ray into the particle. We finally obtain the
general expression for N=1 [2,30]

OV =2(N-1)6,-26, - (N-=2)m mod(2m). (37)

Vectors L, -Li, G, and Ly (N=1) all belong to the plane of
incidence. For every N=1, Ly is the vector issued from
-L by a rotation of angle ¢ in the incidence plane. The
rotation is carried out counterclockwise for positive
angles around the incidence plane normal specified by the
unit vector

GxL cos zpsi;l) b1
I= = — COS @1
IG XL L
— sin ¢ sin ¢,

The rotation according to axis I and of angle 6 applied
to vector —L is given by the vector rotation formula [26]

Ly=cos NV (-L) +sin VI x (-L), N=1,

which yields the following Cartesian coordinates for the
vectors Ly:

—cos 6™ sin ¢+ sin 6N cos cos ¢
Ly= sin 6N sin ¢,

—cos ™) cos - sin 6V sin ¥ cos ¢,

, N=1.

The third component of Ly corresponds to the cosine of
angle ¢V, formed by the Nth scattered ray in respect to
the vertical direction

cos ™) = — (cos 0 cos ¢+ sin 6V sin ¢rcos ¢p;), N=1.
(38)

The backscattered flux is formed by the scattered rays
whose vector Ly is directed into the upper hemisphere,
i.e., cos y¥>0. To select among all the scattered rays
those that are scattered into the upper hemisphere, we
introduce the following function:

H(cos yV) = {

1 ifcos g™ >0

39
0 otherwise (39)

B. Nth Backscattered Flux

Every incident light ray corresponds to a light flux
d2d,(L, G) expressed by Eq. (20). Due to the multiple re-
flections occurring within the particle, it is decomposed
into an infinity of scattered flux components d*®y(L,G),
(N=1,2,3...), each one being a fraction Fy(6;) of the
incident flux element d2®,L,G). For N=1, F(6,)
corresponds to the Fresnel reflectivity of the exterior par-
ticle surface

F1(61) =R15(64). (40)

For N=2, the path followed by the Nth scattered ray in-
cludes a refraction into the particle with a Fresnel trans-
mittivity T15(6;), (N-1) travels within the particle with
attenuation ¢(6;), (N-2) internal reflections with Fresnel
transmittivity Rq1(62)=R12(61), and a refraction out of the



particle with Fresnel transmittivity T9;(69)=T12(61). The
total attenuation is therefore

Fy(61) = Tio(0)RY; (608 1(6y). (41)

We call the Nth backscattered flux, ®p, the sum of the
Nth scattered flux elements directed into the upper hemi-
sphere for all L and G. Let us sum up the flux elements
H(cos yV)d2®y(L,G) in the same manner as in Section 2
for Eqs. (20)—(22). Due to the azimuthal isotropy of the
system, the integrated term does not depend on the
azimuthal angle ¢, and the integral according to angle ¢
yields a factor 27. We obtain

&y =r2E; f f f H(cos y™V)Fy(6;)sin 26,
=0 v ¢y=
X s1n l/}'deld(f)ldl,[l (42)

C. Backward Component
The ratio of the Nth backscattered flux ®y given by Eq.
(42) to the incident flux ®; given by Eq. (22) is called ry

ry=®n/d;, (43)

and the backward component rg is the sum of the ry

rs= E rn- (44)
N=1

Since the contribution of the fourth and following scat-
tered rays is low compared to the one of the three first
scattered rays, we may simplify rg by grouping the fourth
and following rays into a single term r4,. Equation (44)
becomes

rg=ri+ro+rg+ry,. (45)

Furthermore, we consider that the fourth and following
scattered rays equally contribute on average to the back-
scattered and forward fluxes. Thus, the backscattered flux
is half the total scattered flux ®,,. Flux ®,, is derived
from a geometric series similar to Eq. (27) with omissions
of the first scattered ray (specular reflection), the second
scattered ray (exponent 2=0 in the infinite sum), and the
third scattered ray (exponent £=1 in the infinite sum) by
an angular integration similar to Eq. (30)

Ei 2 /2 2 /2
4+ ="2_f f f f (T12(01)T1(02)2(64)
T J g=0J y=0 | J ¢3=0 J 0,=0

X D' [Ro1(6)t(67)]%)cos 6; sin 01d61d¢1:| sin ydyd .

k=2
(46)

The reduction of the geometrical series and of the inte-
grals yields

) f”’z Th(0)RT,(6)2°(6)
by, =27°E;
1-Ry5(61)t(61)

sin 01d 01
6,=0

(47)
Then, the term r,, is given by

10y, 1 (™ Tiy(0)RI(0)E3(61)
sin 26,d6;.
b-

g =7 =5
2@ 2], 1-Rul0yio)

(48)

D. Numerical Evaluations

Figure 3 shows the evolution of the terms rq, rg, r3, r4,,
and backward component rg as functions of the diametri-
cal absorbance ad of the particle for a relative refractive
index ny/n1=1.5. The term r; represents the external re-
flection on the particle and is independent of the particle
absorbance. Its expression is given by inserting Eq. (40)
into Eqs. (42) and (43)

ri= _J f f H(cos V)R 15(6;)sin 26,
#=0 " ¢1=0
Xsin lﬂdeld(ﬁldlﬂ (49)

with  V=cos(26;)cos yy—sin(26;)sin i cos ¢,
from Eqgs. (37) and (38).

Terms rg, r3, ry,, and thereby rg decrease as the par-
ticle absorbance increases. For highly absorbing particles,
since light is almost completely absorbed during its first
travel within the particle, terms rq, r3, and r4, are close to
zero, and rg is close to r;. As expected, the contribution of
the fourth and following scattered rays, ry,, is very low
compared to the contribution of the first three scattered
rays, but it is important to include it in the calculation of
rg to ensure the conservation of energy. Omitting the
fourth and following ray contribution r,, represents in
the case of multiple scattering a loss of energy compa-
rable to absorption. Even though for a single particle the
induced error is small, it is exponentially increased when
modeling multiple scattering between several particles.

The backward component, rg, the particle nonabsor-
bance, f5, and the backscattering ratio, x, are plotted in
Fig. 4 as functions of the particle’s diametrical absorbance
ad for a relative refractive index ny/n{=1.5. In the case of
a highly absorbing particle, only the reflection outside the
particle yields relevant scattering, and fg and rg become
independent of the particle absorbance. The backscatter-
ing ratio x slightly increases with the particle absorbance.
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Fig. 3. Evolution of rq, ry, r3, r4,, and rg as functions of diametri-
cal absorbance.
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Fig. 4. Backward component rg, diffuse nonabsorbance f5 and

backscattering ratio x=rg/fg as functions of diametrical
absorbance.

It strongly depends on the binder-particle relative refrac-
tive index ny/n; as shown in Fig. 5. A high relative refrac-
tive index increases Fresnel’s reflectivities and therefore
favors the backscattering.

6. PARTICLE SUBLAYER

As a first step for considering several particles within the
particle medium, we select a thin sublayer containing al-
most coplanar particles called the particle sublayer. The
binder is a perfectly clear medium 1, and the particles are
identical, large, spherical, and made of an absorbing and
nonscattering medium 2, such as in Sections 3-5. We
would like to express the reflectance and the transmit-
tance of the particle sublayer. Since there is some space
between the particles, only a fraction a, called the shad-
owing ratio, of the diffuse incoming light interacts with
the particles. This part of light is backscattered within a
proportion of rg, i.e., the backward component presented
in Section 5. Therefore, the reflectance r;, of the particle
sublayer is

051 x

ny/n; =2

04 \_/—’
ny/n;=1.5

0.3
ny/n;=1.25

0.2t ny/n; =1.1

0.1

0 2 4 6 8 od
Fig. 5. Evolution of the backscattering ratio as functions of dia-
metrical absorbance for various relative refractive indices.

rp=a rg=axfs, (50)

where x is the backscattering ratio defined in Eq. (33).
The particle sublayer transmittance is formed by the frac-
tion (1-a) of incident light that does not strike any par-
ticle and by the fraction a of light scattered forward by
the stroked particles

tr=1-a+a(l-x)fs. (51)

The multiple reflections of light between neighboring par-
ticles (lateral scattering) and the shadowing of each par-
ticle by its neighboring particles are ignored, assuming
that the overestimation of incident light due to omission
of shadowing is compensated by the underestimated at-
tenuation of scattered light due to lateral scattering.

We may extend the model by considering a colored
binder with absorption coefficient «;; instead of a clear
binder. In this case, the particle layer is a slice of binder
whose thickness equals the diameter d of the particles. A
light ray perpendicularly crossing the slice is attenuated
by a factor t=e"*#% given by Beer’s law [Eq. (2)]. An ob-
lique ray crossing it according to an angle 6 is attenuated
by the factor ¢¢s . Diffuse light is attenuated by a factor
tyr that embodies the attenuation of all the ray orienta-
tions

/2
by = f e~ amdleos ¥ 5in 26d6. (52)
6=0

In a first approximation, we may consider that the binder
significantly attenuates only the fraction (1-a) of inci-
dent light that does not strike any particle. The rest of the
incident light, which interacts with the particles, travels
almost no distance within the binder and can be assumed
as not absorbed outside the particle. Thus, Eq. (50) is
unchanged and Eq. (51) becomes

tL=(1—a)tM+a(1—x)fs. (53)

The particle sublayer can also be composed of various
types of particles with different refractive indices, diam-
eters, and/or absorption coefficients. Each type of particle
is characterized by its nonabsorbance fgk, its backscatter-
ing ratio x;, and its shadowing ratio a;, where the sum of
the a;, is lower than 1. Equations (50) and (51) become,
respectively,

N
rL= > apxifsk (54)
k=1
and
N N
tr=1- > ap+ >, ap(l—x)fsp- (55)
k=1 k=1

7. INFINITE PARTICLE MEDIUM

According to our model, an infinitely thick particle me-
dium corresponds to a semi-infinite pile of particle sublay-
ers. This section aims at determining its reflectance and
examining its evolutions as a function of absorption,
refractive index, and shadowing ratio.



A. Infinite Reflectance

Let us consider a semi-infinite pile of particle sublayers
with Lambertian light illuminating the first layer. The
first layer has a reflectance rj, given by Eq. (50), and a
transmittance ¢;, given by Eq. (51). The second layer to-
gether with all lower layers form a reflecting background
whose directional reflectance is r,. Figure 6 shows the
multiple reflection process taking place between the first
layer and this reflecting background. Summing the exit-
ing components featured in Fig. 6 yields a geometric se-
ries, such as the model of Kubelka [13]. After reduction,
the reflectance rq,. of the infinite particle medium is

t%rm

(56)

My =Tp+ .
1-rir.

Since the number of particle sublayers is infinite, reflec-
tance rq,.. is not influenced by the addition or the subtrac-
tion of one layer, i.e., ri,.=r.. Equation (56) yields the
following equation:
1+r2-t2
e ————r, +1=0 (57)
L

whose single valid solution (the other solution is higher
than 1 and cannot represent a reflectance) is

1+r%—t% (1+r%—t%)2
- -1

27‘L

(58)

T, =
er

According to Eq. (58), we may express reflectance r.,
under the form

rx=A—\rA2—1 (59)

and replace r; and ¢; according to Egs. (50) and (51),
which yields

(1-1s) ( (
A= +(1-a(l-fg)| 1+

2xf S

Since in the case of clear particles there is no absorption,
we have a=0, fg=1, and thereby r,.=1 independently of
the shadowing ratio a¢ and the refractive index ny/n;.
Therefore, an infinite nonabsorbing particle medium
reflects all of the light that it receives.

1 —fs)) 60

B. Numerical Evaluations

Figure 7 shows that the reflectance r.. of the infinite par-
ticle medium decreases as the particle absorbance ad in-
creases for every binder-particle relative refractive index

| 1st particle layer

Semi-infinite pile
of particle layers

Fig. 6. Infinitely thick particle medium modeled as an infinite
number of particle sublayers.

1¢ 7y

0.5 1 1.5 2
Fig. 7. Infinite particle medium reflectance as a function of dia-
metrical absorbance for various relative refractive indices with a
shadowing ratio ¢=0.5.

nq/nq. Above a certain particle absorbance, since almost
all of the light penetrating the particles is absorbed, only
the light reflected on the external face of the particles is
able to emerge from the particle medium, and the reflec-
tance r,, becomes independent of the particle absorbance.
A high binder-particle relative refractive index ny/n; in-
creases the reflectance r., whatever the particle absor-
bance. The high Fresnel reflectivities favor the external
reflections on the particles, and the low Fresnel transmit-
tivities reduce the penetration and the absorption of light
into particles.

The influence of the shadowing ratio is illustrated in
Fig. 8, where r., is plotted as a function of the diametrical
absorbance ad for a small shadowing ratio a=0.005
(dashed curve) or for a high shadowing ratio a=1 (solid
curve). The increase of reflectance r., with the shadowing
ratio, being up to 45% for a high particle absorbance, is
consistent with the fact that interparticle multiple
scattering is favored by closer particles.

8. INFINITE PARTICLE MEDIUM OBSERVED
FROM AIR

In many cases, the binder refractive index n; is different
from the refractive index of air, where the observer is lo-

1¢ 7y

0.5 1 1.5 2
Fig. 8. Evolution of the infinite particle medium reflectance as a
function of diametrical absorbance for various shadowing ratios.



cated. The reflections and transmissions of light at the
binder—air interface must be taken into account. The par-
ticle medium, composed of a perfectly clear binder (me-
dium 1) with particles made from a transparent medium
2, is assumed to have an infinite thickness and to behave
as a Lambertian reflector with reflectance r. given by
Eq. (68). Its interface with air is assumed to be flat
(Fig. 9). Due to the multiple reflections of light taking
place beneath the air-binder interface and to the cone
spreading of the observer’s viewing solid angle at the
interface, the global reflectance of the particle medium
observed from air is not r... Instead, the specimen is char-
acterized by a reflectance factor p, which depends on the
illumination and the observational geometries.

Directional incident light comes from the exterior at
angle 6,. A fraction T;(6,), given by Fresnel’s formulas,
crosses the binder-air interface and is subject to multiple
reflections between the stack of particles and the interior
face of the upper interface. Since the light reflected back
by the particles is Lambertian, the internal face of the flat
interface has the internal diffuse reflectance ryy defined
by Eq. (12), which depends on the refractive indices n,
and n;. The light emerging into the external medium is
captured by a radiance detector at an angle 6;. The radi-
ance captured by the detector at angle 6 is a fraction
(no/n1)*T1(6}) of the radiance emitted by the particles it-
self being a fraction 1/ of the Lambertian irradiance re-
flected by the infinite stack of particles [31].

The global reflectance of the specimen, divided by the
radiance to irradiance ratio 1/7 of a perfect white dif-
fuser, gives the global reflectance factor p(6y,6;) of the
specimen illuminated at angle 6, and observed at angle 6

s
p( 0, 0p) = (no/n1)*T1(66) To1(0p) ———. (61)
1 —TI«l'10

The same expression would be obtained by applying
Saunderson’s correction [32] to the reflectance r. of the
stack of particles by considering a bidirectional measur-
ing geometry. We assume that 6+ 6, so that gloss is dis-
carded from the observation. Instead of directional inci-
dent light, we may have a diffuse light. The illumination
is assumed to be Lambertian when the incident light com-
ing from all directions of the upper hemisphere have the
same radiance. This assumption only changes the Fresnel
transmission of the incident light across the air—binder
interface, which becomes t(; as defined by Eq. (13). When
diffuse illumination is used, the radiance detector is usu-
ally positioned at the normal of the specimen, i.e., ,=0

n,

O® 00 0000
00006%0
00000000

Fig. 9. Spherical transparent particles in a clear binding me-
dium forming a flat interface with a different external medium.

(diffuse/0° geometry). The reflectance factor p(d,0) mea-
sured according to the diffuse/0° geometry is

I'e
p(d,0) = (no/n1)2t01T01(0)ﬁ. (62)
—r.r'y

Note that, according to Eq. (15), we have ¢y
=(1-ry0)/(ng/n1)%. The reflectance factor becomes

Te
p(d,0)=(1-r19)Tp:(0)——.
1- I'sI'10

Figure 10 shows the evolution of the reflectance factor
p(d,0) as a function of the diametrical absorbance, for the
typical particle refractive index of chalk, ny=1.65. The re-
fractive index of the binder is n;=1 for air, n;=1.33 for
water or ny=1.5 for oil, and the refractive index of the ex-
ternal medium is ng=1 (air). Like the infinite reflectance
', the reflectance factor p(d,0) decreases as the particle
absorbance increases. The reduction of reflectance due to
a high value of n; is first explained by the low value of the
binder-particle refractive index ny/n, which reduces the
reflectance r., (see Fig. 7), and second by the high value of
the binder-air relative refractive index ni/ny, which
increases the internal reflection of light beneath the
air-binder interface and the chance for the light to be
absorbed into particles.

In a dry powder, pigments are surrounded by air
(binder refractive index close to 1). An important fraction
of light emerges from the medium after reflections at the
exterior of the pigments without absorption. This fraction
of light has a constant spectrum and a white color. At the
same time, the proportion of light penetrating the par-
ticles is low. This explains the bright and weakly satu-
rated color of dried pigment powders. When the powder is
mixed with oil (binder refractive index close to 1.5), less
light is externally reflected on the pigments, and more
light is absorbed inside them. This yields a strong con-
trast between spectral domains of high and of low absor-
bance and therefore a more saturated color for the
pigment powder in oil.

Fig. 10. Infinite particle medium reflectance factor as a function
of the diametrical absorbance for various binder refractive indi-
ces ni(ny=1.65) and for a diffuse/0° measuring geometry in air.



In the special case, where the binder has the same re-
fractive index as the particles (ng=n), saturation would
be optimal, but since the particle medium is infinite and
there are no more reflections, the reflectance factor of the
particle medium is zero, i.e., its color is black.

9. COMPARISON WITH THE MODEL
OF SHKURATOV et al.

Except for the derivation of a reflectance factor, account-
ing for the multiple reflections of light beneath the air-
binder interface, the model we propose relies on the same
notions as the classical reflectance models for infinite par-
ticle media: Nonabsorbance of a single particle, backward
component, reflectance and transmittance of a particle su-
blayer, and multiple reflections and transmissions among
superposed particle sublayers. We propose to compare our
model with the model of Shkuratov et al., which is the
closest to the model we have presented. The main differ-
ences concern the particle nonabsorbance and the deriva-
tion of the backward component.

A. Nonabsorbance

In the particle nonabsorbance model developed by
Shkuratov et al. [22], the events of reflection and trans-
mission are described for diffuse light. They are each rep-
resented by an average reflection or transmission factor.
The light coming from the exterior of the particle is as-
sumed to be Lambertian. A fraction r5 defined by Eq. (12)
is reflected at the particle exterior surface, and a fraction
t19 given by Eq. (13) is transmitted into the particle. The
light located within the particle is also assumed to be
Lambertian. A fraction rq; is reflected on the particle in-
terior surface, and a fraction #q; is transmitted to the ex-
terior. Attenuation due to absorption is also represented
by an averaged factor M derived from Beer’s law

M=e (63)

where d represents the average distance traveled by the
light rays within the particle. It is calculated as the mean
of the path lengths d cos 6, traveled by the light rays ac-
cording to their orientation 6,, knowing that rays oriented
by angle 6, form a fraction sin 26,d 6, of the global light
flux

3 72 2d
d= f d cos 6, 8in 20,d 0y = —. (64)
05=0 3

The Lambertian light is subject to a multiple reflection-
transmission process within the particle. Its description is
similar to the description performed in Subsection 4.A for
directional light and leads to a formula similar to Eq. (27)
containing a geometric series

%

tigtaM
fs=ri+ t12t21ME [roaM Tt =715+

———. (65)
k=0 1-rgM

Equation (65) was also derived by Melamed [19] under
the same assumptions but with a different definition for
the factor M. It is a sum of attenuated flux elements, each
flux element corresponding to a fraction sin 26,d 6, of the
initial flux with 6, as its orientation angle and being at-

tenuated by the factor exp(—ad cos 6,) according to Beer’s
law [Eq. (26)]

(1-(ad +1)e ).

/2
M= e 408 O gin 20,d o = ——
f 0 7 (ad)?

(66)

Figure 11 compares the diffuse nonabsorbance given by
our model [Eq. (31)], by the model of Shkuratov et al.
[Eq. (65) with M given by Eq. (63)], and by Melamed’s
model [Eq. (65) with M given by Eq. (66)]. Nonabsorbance
is plotted as a function of the particle’s diametrical absor-
bance ad for a relative refractive index ny/n;=1.5. The
three curves are similar and with the same order of mag-
nitude. However, the relative difference between our
model and the models of Melamed or Shkuratov et al.
reaches 20% due to the assumptions of Melamed and
Shkuratov et al. of Lambertian light inside the particle.
In the case of perfectly smooth spherical particles, light
inside the particle is not Lambertian because it is re-
fracted from the exterior medium to the particle medium
of higher refractive index within a limited cone (and not
within an entire hemisphere). In Appendix A, we propose
an extension of the models of Melamed and Shkuratov
et al. accounting for this limited cone in the special case of
perfectly smooth spherical particles.

B. Backward Component

Shkuratov et al. proposed a model for quantifying back-
scattering and determining the backward component
reflected by a particle. The model of Shkuratov et al.
and our model differ in the definition of “backward” and
“forward” directions for scattering. According to our
model, the backward component only comprises light rays
scattered into the hemisphere of incidence of the diffuse
light (the upper hemisphere). In the model of Shkuratov
et al., the backward hemisphere is different for each inci-
dent ray. It is the hemisphere whose base is orthogonal to

/s

1
08 Orientational model

Melamed's model
0.6 Shkuratov's model
0.4
021
0 2 4 6 8 10 od

Fig. 11. Diffuse nonabsorbance fg given by our model (solid
curve), Melamed’s model (dashed curve), and the model of
Shkuratov et al. (dotted curve) as functions of the diametrical
absorbance.



the incident ray. Thus, the backscattered rays are those
that form an acute angle with the incident ray.

Let us consider the case of the first scattered rays re-
flected on the exterior surface of the particle. According to
Snell’s law, their angle with respect to their incident ray
is twice the local incident angle. Therefore, according to
the model of Shkuratov et al., they are considered to be
backscattered when the local incident angle is inferior to
7/4. Their contribution r; to the backward component is

74
ri= f R12(01)Sin 201d01 (67)

01=0

Since the second scattered rays undergo two refractions
when crossing the particle, their exiting direction de-
pends on the relative refractive index of the binder-
particle interface. Shkuratov et al. observed that for a
relative refractive index inferior or equal to 1.5, almost all
of the exiting rays form an obtuse angle with their inci-
dent ray. Assuming that this observation is also valid for
higher relative refractive indices, the model of Shkuratov
et al. neglects their contribution to the backward compo-
nent. The third and following scattered rays are assumed
to equally contribute to the backward and the forward
components.

In Fig. 12, the backward component rg calculated ac-
cording to the model of Shkuratov et al. (dashed curve)
and the one calculated according to our model (solid
curve) are plotted as functions of the particle absorbance.
The two horizontal lines represent the components r; de-
rived according to the two models [Eqgs. (49) and (67), re-
spectively]. They represent the contribution of the first
scattered rays that is independent of the particle absor-
bance. The contribution of the other scattered rays, de-
pendent on the particle absorbance, is represented by a
term r,. According to Shkuratov et al., r, is half the total
scattered flux composed of the third and following scat-
tered rays. According to our model, r, gathers the terms
ro, s, and ry, plotted in Fig. 3. The differences in the defi-
nitions of the backward and forward directions induce sig-
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Fig. 12. Backward component r; and contribution r, of the sec-
ond and following scattered rays according to our model (solid
curve) and to the model of Shkuratov et al. (dashed curve) as
functions of the particle absorbance.

nificant differences between the terms rg, r;, and r, de-
rived according to our model and according to the model
of Shkuratov et al. model.

In the multiple scattering model used by Shkuratov
et al. and by us, the backward component represents the
contribution of a single particle to the particle sublayer
reflectance. In contrast to the approach by Shkuratov
et al., our computation of the backward component only
comprising the light rays scattered in the hemisphere of
incidence of the diffuse light is consistent with Kubelka’s
layering model [13] applied for computing the reflectance
of a pile of particle sublayers (e.g., Subsection 7.A).

10. CONCLUSIONS

The proposed reflectance model is dedicated to particle
media formed by a collection of large, identical, absorbing,
and spherical particles contained within a clear binder.
Five parameters are used: The refractive index of the par-
ticles, their size, their absorption coefficient, their concen-
tration represented by the shadowing ratio, and the re-
fractive index of the binder. The model relies on the
notion of the particle sublayer whose reflectance and
transmittance are obtained by describing the multiple
reflection-transmission of light inside a single particle.
The backscattering of a particle is calculated by consider-
ing the attenuation and the direction of each scattered
light ray according to a 3D-vector model, assuming a
Lambertian illumination from the upper hemisphere. The
infinite particle medium corresponds to an infinite pile of
particle sublayers. Its reflectance is obtained by describ-
ing the multiple reflection-transmission of diffuse light
between the particle sublayers. The model is extended to
the case of a binder different from air, where both the in-
ternal light reflections beneath the binder-air interface
and the measuring geometry have an importance. The dif-
ferences between our model and the recent model of
Shkuratov et al. are also examined. The influences of the
particle absorption coefficient, the particle shadowing ra-
tio, and the particle and binder refractive indices on the
reflectance of an infinite particle medium are illustrated
by numerical evaluations. The present model enables one
to predict the reflection spectrum of a particle medium
and therefore estimate the variation of its color, bright-
ness, or saturation when the particle concentration or the
binder refractive index are modified. It provides a helpful
framework for predicting the aspect of powders and may
be used for the color formulation of pigmented paints.

APPENDIX A

The models of Shkuratov et al. and of Melamed for the
multiple reflection and transmission of diffuse light
within a particle are presented in Subsection 9.A. Their
expression for the diffuse nonabsorbance of a spherical
transparent particle notably differs from the one given by
our model. This is because, in the case of transparent par-
ticles whose refractive index is higher than the refractive
index of the surrounding medium (n9>n;), the orienta-
tion of light rays refracted into the particle cannot exceed
the critical angle 6;=arcsin(n/ny). Since, for each light
ray, the multiple reflection process occurs with an identi-



cal incidence angle for each reflection, and since there is
no diffusion, it is impossible to have Lambertian light,
i.e., rays of equal radiance propagating over the whole
hemisphere inside the particle.

Assuming that the diffuse light is uniformly distributed
over the angular range [0, 6;], the average attenuation
factors should be expressed by integrals between 0 and 6y,
instead of the integrals between 0 and 7/2 expressing ro;
in Eq. (12) or M in Eq. (66). The diffuse internal reflec-
tance 79, of the particle interface becomes

arcsin(ng/n)
f R21(02)Sin 202(102 9
0,=0 (n1/ng)°rig

arcsin(nq/ng) (I’L 1/n2)2
f Sil’l 2 02d 02

05=0

ro1=

=Ti2

(A1)

with the integrals being reduced due to the change of
variable 6y=arcsin(ni/nqysin ;) and the identity Ro;(65)
=R5(61). We observe that the spherical interface has the
same diffuse reflectance at the interior and exterior.
Thus, the diffuse nonabsorbance given by Eq. (65)
becomes

1-r 12)2M
=rio+ —m. A2
fs=riz Lorgll (A2)
Regarding the average attenuation factor M due to ab-
sorption, the average travel length used in the model of
Shkuratov et al. Eq. (64) becomes

arcsin(nq/ng)
J d cos 6sin 26d6

6=0

arcsin(nq/ng)
f sin 26d6

6=0

(_i:

, (A3)

and the factor M then becomes
M = exp(- ad) = exp[- (2/3)ad(ny/n1)*(1 - u?)] (A4)
with
w=1\1=(ny/ny)%. (A5)

According to Melamed’s model, the average attenuation

factor becomes
arcsin(nq/ng)
J emad s 0 gin 2046

=0

M= arcsin(nq/ng) ’ (A6)
f sin 26d6

6=0

i.e., with u given by Eq. (A5)

2(ny/ny)® ud -ad
M= W[e ﬂ(l + ad,u) —-e (1 + ad)] (A7)

The improved models of both Shkuratov et al. and
Melamed give nearly the same diffuse nonabsorbance as
our model with relative differences lower than 1% for a
relative refractive index ny/n,=1.5.
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