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Should Melamed’s spherical model of size–colour dependence in

powders be adapted to non-spheric particles?
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bEcole des Mines d’Alès, 6, Avenue de Clavières, 30319 Ales Cedex, France
Abstract

In 1963, Melamed proposed a model that expressed reflectance of a powder described as a population of spherical particles of unique diameter as 
a function of size, shape and optical characteristics of the powder. This paper shows how, assuming particles to be ellipsoids of revolution, one 
dimension can be added. We show that the mean value of the shape coefficient of the model tends to converge if many particles are accounted 
for. 
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1. Introduction

Reflectance of powders is something hard to control as it

depends on many parameters. These parameters are both

intrinsic and extrinsic to the powder. It is well known that

reflectance of a powder will depend on the size of the

particles, on their shape and on the nature of the material. It

will also depend on the way that the powder is prepared for

the measurement, i.e. its compacity and the state of the

surface. The reflectance spectrum is characteristic (under the

geometrical conditions of the measurement) of the sample as

it expresses the percentage of energy reflected by the sample

related to the energy received by the sample from the

lighting source. Reflectance does not take into account the

characteristics of the human perception so it is not directly a

measure of the perceived colour of a material but it is rather

simple, knowing the reflectance to get the L*a*b* co-

ordinates, to characterise the colour of the materials. The

interested reader should refer to [1,2] for more details.

In 1963, Melamed [3] developed a model that directly

expresses reflectance as a function of different parameters such

as particle diameterd, refractive index n, absorption coefficient
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k, wavelength of the incident radiation k, and a coefficient (xu)
that depends on particle shape and arrangement.

This model is very different from the well-known

Kubelka–Munk model [4] which is commonly used in

industry for colour-matching problems. Kubelka–Munk’s

model is a ‘‘continuous’’ model, i.e. it considers that the

medium, even if composed of different components, is one

material with its own optical properties. Its main advantage is

to allow indirect reflectance summation because the coefficient

of diffusion S and of absorption K are additive and are related

to the reflectance through the Kubelka–Munk function.

Melamed’s model is a ‘‘discontinuous’’ model as it

considers that the material is composed of particles with

their own physical and optical properties. The reflectance is

then an individual property of the particle, and the aim is to

make it become a collective property of the material by

taking into account the arrangement of the particles, through

the coefficient xu. Melamed calculated xu value for spheres

of unique diameter and arranged in a compact hexagonal

way.

Since this ideal case never applies to real, industrial

powders, we want to enlarge the use of this model by

adapting [5] it to populations of particles of any shape, with

a granulometric distribution, and randomly arranged. The

coefficient xu can be supposed to be dramatically depending
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Fig. 1. Angle a for two different shapes of particles.
on particle shape and that is what we want to verify within

the scope of this study. Other fits of the model are presented

in [6].

As will be described, the method used is both mathe-

matical and experimental: mathematical because some

calculations are necessary and experimental because,

knowing the future use of the coefficient, some simplifica-

tions have been made possible.
2. Definition of xu [7]

xu is a geometrical parameter depending on particle

shape and arrangement. It represents the probability that a

ray coming from the centre of one particle emerges upwards

without being reflected by the surface of a neighbouring

particle.

We consider that a real sample is made of numerous

particles arranged randomly so that, theoretically, xu is

different for each particle. For one central particle

surrounded by its close neighbours, the problem is to

calculate the part of the open space that is occupied by these

neighbours which therefore prevent rays coming from the

centre of the central particle from emerging upwards. This

part of occupied space is linked to the notion of solid angle.

Fig. 1 defines the angle a that will serve in the calculation of

the solid angle and shows that this angle strongly depends

on the shape of particles.
In the literature, the case of arrangement of spheres of

uniform size (or not) has often been treated [8]. We can find

many examples of modelling of arrangements of such

particles. As real particles are sometimes far from this shape,

we wanted to enlarge the study to be able to apply the model

for other types of particles. We chose ellipsoids of

revolution, which allow us to add one dimension to the

problem. In the literature, we can find some examples of

arrangement of ellipsoids [9–11], but these arrangement are

not randomly constructed, they are composed of a repeating

geometric pattern.
3. General approach

Fig. 2 schematically shows our general approach for the

calculation of the coefficient xu.
4. Calculations details

As xu is related to the solid angle, this notion should be developed:

4.1. Definition of the solid angle

Solid angle is defined as the three-dimensional Fangle_ formed by the vertex of a cone (Fig. 3). For the case presented in

Fig. 3, the calculation is rather simple. The solid angle x is expressed as a function of the half-angle of the cone c.

x ¼ 2k 1� coscð Þ ð1Þ

with

tanc ¼ r

OOV
ð2Þ

4.2. Calculation of xu for spheres

This calculation for spheres is the simplest case because of symmetry. Fig. 4 shows a top view of a central sphere

surrounded by its six neighbours. Fig. 5 shows a side view of a section of the same configuration.

As xu represents the geometrical probability for upward diffusion, it can be expressed as the remaining space after the space

occupied by the six neighbours of the central particle has been removed from the 2k steradians of the upper half space. The

filled space corresponds for each particle to half of the solid angle x. Thus xu can be expressed as:

xu ¼
2k� 64 -

2

� �
4k

ð3Þ



R = f(xu,…), with xu depending on size and shape 
of the particles 

The calculation of xu for spheres is 
known. It depends on the sum of the 
solid angles occupied by the particles 
neigbouring the central particle. 

Calculation of the solid angle for  
two ellipsoïds : 

We choose to assimilate the particles 
to ellipsoïds of revolution 

Calculation of xu for many situations  
randomly drawed : 

We then take more particles  
into account for each  
situation 

Xe notice that xu is rather 
varying in some cases 

Choice of the simplest 
configuration 

The mean value of 
xu tends to converge 

Finally 
R(xu min,…) ≅  R(xu max,…) 

xu = 0,3

Fig. 2. General approach for the calculation of xu.
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Fig. 3. Notion of solid angle.
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Fig. 4. Top view of one layer of hexagonal compact arranged spheres.
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Fig. 5. Side view from one sphere and the space occupied by its neighbours (section).
.

Knowing that for spheres c is equal to k/6, we get for xu:

xu ¼ 0:299:

This rather simple calculation can be applied only when the particles are spherical, because the surface intercepted by the

two tangents issued from the centre of the sphere is then a disk, identical for each surrounding particle.

4.3. Calculation for ellipsoids of revolution

The case of ellipsoids is more complicated because each neighbouring ellipsoid occupies, when ‘‘viewed from’’ the central

particle, a different space. As we suppose all the ellipsoids to be the same size, a top view shows ellipses in contact. All these

ellipses are contained in the plane containing all their centres (Fig. 6).

In this case, the surface intercepted by the two tangents issued from the centre of the central ellipsoid is not a disk and the

cone is not a cone of revolution.

To estimate xu for this type of configuration, we nevertheless calculate the surface intercepted by the tangents (Fig. 7). This

surface corresponds to the cross section of the ellipsoid containing (CCV). We then calculate the diameter of the disk whose

surface is equal to the surface of this cross section and so we find again the same theoretical case as the one before.

4.3.1. Calculation of the surface of the cross section and of the solid angle

First, we consider two ellipses: one (denoted EV) supposed to be the central one, and one of its neighbours, denoted (E)

Their position is randomly defined. We define on each neighbour two orthonormal axes: the x-axis corresponding to the major

axis of the ellipse and the y-axis to the minor axis. The centre is the centre of the ellipse. Thus, the centre OV of the central

ellipse is defined by its co-ordinates (xOV,yOV) in this system of co-ordinates that we are going to use to define some geometrical

objects useful in obtaining the solution.

The equation of the straight line (OOV) is

xO Vy� yO Vx ¼ 0: ð4Þ

The equation of the ellipse (E) is

x2

a2
þ y2

b2
� 1

4
¼ 0 ð5Þ

with a and b respectively the major and minor axes of the ellipse.



Fig. 6. Top view of an arrangement of ellipsoids (one layer).
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Fig. 7. Definition of the cross section of the cone.
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The general equation of the tangent to a plane curve of equation f(x,y)=0 at a point (xV,yV) can be written:

Bf

Bx
x V; y Vð Þ x� x Vð Þ þ Bf

By
x V; y Vð Þ y� y Vð Þ ¼ 0 ð6Þ

and so the equation of the tangent line to (E) at the point M (xM,yM) is:

xM

a2
x� xMð Þ þ yM

b2
y� yMð Þ ¼ 0: ð7Þ

Two tangent lines at (E) containing OV can be drawn. If B and C are the two tangential points, the equations of the tangen

lines are:

xB;C

a2
xþ yB;C

b2
y�

x2B;C

a2
þ

y2B;C

b2

!
¼ 0: ð8Þ

According to their definition, B and C belong to the ellipse, so the following equation is verified:

x2B;C

a2
þ

y2B;C

b2
¼ 1

4
ð9Þ

xB;C ¼ Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

y2B;C

b2

s
: ð10Þ

OV belongs to the two tangent lines so:

Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

y2B;C

b2

s

a2
xO V þ

yB;C

b2
yO V �

1

4
¼ 0 ð11Þ

and therefore,

F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

y2B;C

b2

s

a
xO V ¼

1

4
� yB;C

b2
yO V ð12Þ
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Fig. 8. Delimitation of the plane into three zones according to the position of OV relative to the ellipse.
or, squaring this equation,

y2B;C
y2O V

b4
þ x2O V

a2b2

� �
� yB;C

yO V

2b2

	 

þ 1

16
� 1

4

x2O V

a2
¼ 0 ð13Þ

yB and yC are the two solutions of this quadratic equation. Arbitrarily, we choose yC<yB. We can calculate:

xB;C ¼ Fa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

y2B;C

b2

s
: ð14Þ

The sign of xB,C depends on the position of OV relative to the ellipse E. Three cases can be differentiated (cf. Fig. 8).

To estimate the solid angle, we have seen that we have calculated the surface of the vertical section of the cone containing

(CCV). CV is the point belonging to (OVB) and characterised by OVC=OVCV.
Let us find the co-ordinates of CV:

C VðxC V; yC VÞa O VBð Þ` yB � yO Vð ÞxC V � ðxB � xO VÞyCV � xO VyB þ xByO V ¼ 0

d O V;CVð Þ ¼ d O V;Cð Þ` xC � xO Vð Þ2 þ yC � yO Vð Þ2 ¼ xC V � xOVð Þ2 þ yC V � yO Vð Þ2
�

ð15Þ

If yB=yOV then, yCV=yOV, and we have a quadratic equation where xCV is the unknown quantity.

Otherwise, we have a quadratic equation where yCV is the unknown:

xB � xO V

yB � yO V

� �2

þ 1

!
y2C V þ 2

xB � xO V

yB � yO V

� �
xVOyB � yVOxB

yB � yO V
� xO V

� �� �
yC þ xO VyB � yO VxB

yB � yO V
� xO V

� �2

þ y2O V � xC � xO Vð Þ2� yC � y2O V

� �
¼ 0 ð16Þ

Let H be the middle of [CCV]. According to these definitions, we have (OVH)–(CCV).
The required surface is the intersection of the cone whose vertex is OV with the vertical plane containing (CCV).
A cone is a set of lines, all of them passing through a common point, called the vertex of the cone. These lines are called the

generating lines. We can determinate an equation of the cone, knowing the co-ordinates of the vertex and the equation of one

directrix of the cone. A directrix is a curve that cuts all the generating lines of the cone. If A (a,b,c) is the vertex of the cone

and if one of its directrix can be defined by

f x; y; zð Þ ¼ 0

g x; y; zð Þ ¼ 0

�
ð17Þ

then an equation of the cone is:

f aþ k x� að Þ; bþ k y� bð Þ; cþ k z� cð Þð Þ ¼ 0

g aþ k x� að Þ; bþ k y� bð Þ; cþ k z� cð Þð Þ ¼ 0
:

�
ð18Þ

In the present case, the cone is of vertex OV and its generating lines are all the tangent lines to the ellipsoid passing through

OV. One directrix of the cone is the intersection of the ellipsoid and the vertical plane containing the straight line (BC).



,

Let us find the equation of this directrix:

& Equation of the vertical plane containing (BC)):one point M (x,y,z) belongs to this plane if:

j 0 xB � xC x� xB
0 yB � yC y� yB
1 0 z

j ¼ 0 ð19Þ

so:

yB � yCð Þx� xB � xCð Þyþ xByC � yBxC ¼ 0 ð20Þ

& Intersection of this plane and of the ellipsoid of revolution:

yB � yCð Þx� xB � xCð Þyþ xByC � yBxC ¼ 0

x2

a2
þ y2

b2
þ z2

b2
� 1

4
¼ 0

8<
: ð21Þ

We define:

A1 ¼ yB � yC

B1 ¼ xC � xB

C1 ¼ yBxC � xByC ð22Þ
We then get a curve define by:

y ¼ C1

B1
� A1

B1
x

z2 ¼ � x2
b2

a2
þ A12

B12

� �
þ 2A1C1

B12
xþ b2

4
� C12

B12

:

8>><
>>: ð23Þ

The vertex of the cone is OV(xOV,yOV,0), and one directrix is the curve defined by the equation before. So we can write:

M (x,y,z)Z (C) if and only if M k so that

A1

B1
xOV þ k x� xOVð Þð Þ þ yOV þ k y� yOVð Þð Þ � C1

B1
¼ 0 að Þ

xOV þ k x� xOVð Þð Þ2 b2

a2
þ A12

B12

� �
� 2

A1C1

B12
xOV þ k x� xOVð Þð Þ þ k2z2 � b2

4
þ C12

B12
¼ 0 bð Þ

8>><
>>: ð24Þ

An equation of the vertical plane passing containing the straight line (CCV) is:

yC � yCð Þx� xC � xCð Þyþ yCxC � xCyC ¼ 0 ð25Þ
To find the intersection, we shall eliminate k in Eq. (24b). And first, we shall express k as a function of x and y using Eq. (24a)

and then y as a function of x using Eq. (24b). This leads to:

k ¼
C1

B1
� A1

B1
xOV � yOV

x� xOVð Þ A1
B1

þ yC � yCV

xC � xCV
xþ yCVxC � yCxCV

xC � xCV
� yOV

z2 ¼ 1

k2
� C12

B12
þ b2

4
þ 2

A1C1

B12
xOV þ k x� xOVð Þð Þ � xOV þ k x� xOVð Þð Þ2 b2

a2
þ A12

B12

� �� � :

8>>>>>><
>>>>>>:

ð26Þ

This curve belongs to the vertical plane containing (CCV). In this plane:

S ¼
Z x VC V

x VC

Z z V xð Þ

�z V xð Þ
dx Vdz V ð27Þ

so, considering the symmetry

S ¼
Z x VC V

x VC

2z xð Þdx V ð28Þ
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Fig. 9. Example for which it is necessary to make a correction.

Table 1

Variations of 7 individuals and the mean xu for 9 different randomly chosen configurations of two different major axis/minor axis (a/b) ratios

a/b Configuration no. Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Mean value

2.33 1 0.359 0.36 0.349 0.35 0.358 0.346 0.348 0.353

2 0.348 0.355 0.344 0.355 0.357 0.356 0.367 0.355

3 0.344 0.33 0.358 0.369 0.356 0.335 0.339 0.347

4 0.337 0.338 0.354 0.349 0.343 0.352 0.334 0.344

8 0.334 0.334 0.334 0.334 0.334 0.334 0.334 0.334

1.44 5 0.327 0.324 0.321 0.328 0.334 0.322 0.327 0.326

6 0.323 0.327 0.329 0.331 0.329 0.327 0.323 0.327

7 0.325 0.329 0.326 0.329 0.325 0.334 0.321 0.327

9 0.324 0.324 0.324 0.324 0.324 0.324 0.324 0.324
with

xV ¼ x

cos að Þ
zV xð Þ ¼ z xð Þ
and cos að Þ ¼ cos arctan yC�yCV

xC�xCV

	 
	 
 ð29Þ

The points C and CV are those defined in Fig. 6.

S ¼ 2

Z xCV=cosa

xC=cosa

1

k


� C12

B12
þ b2

4
þ 2

A1C1

B12
xO V þ k xcosa � xOVð Þð Þ � xOV þ k xcosa � xOVð Þð Þ2 b2

a2
þ A12

B12

� �s
dxV ð30Þ

This integral can be numerically calculated using the approximate method of trapezes.

We assimilate this surface to a disk of equal surface in order to calculate the solid angle. The radius of this equivalent disk

is:

req ¼
ffiffiffiffi
S

k

r
ð31Þ

The half-angle c of this virtual cone is defined by

tanc ¼ req

OVH
ð32Þ

H is the middle of [CCV] so:

yH ¼ yC þ yCV

2

xH ¼ xC þ xCV

2

8><
>: ð33Þ
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Fig. 10. Configurations of ellipsoids of revolution used to calculate xu (top view).
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Fig. 11. xu as a function of the major axis/minor axis (a/b) ratio of the ellipsoids.
and then

OVH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xH � xOVð Þ2 þ yH � yOVð Þ2

q
ð34Þ

the solid angle is equal to:

x ¼ k 1� coscð Þ ð35Þ
This solid angle is half the classic one (cf. Eq. (1)) because in our case, we only consider the upper half space.
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Fig. 12. Reflectance value as a function of the long axis/short axis (a/b) ratio of the ellipsoids.
4.3.2. Calculation of xu
To calculate xu, we have to sum the solid angles occupied by each neighbouring particle. But if we add without some care,

some parts of the space will be accounted for two times, because, in some cases, a part of the surface we calculate for the

ellipse i is masked by an ellipse j, situated between the ellipse i and the central ellipse (Fig. 9). In that case, it is necessary to

make a correction.

In the case presented in Fig. 9, it is necessary to get the co-ordinates of BV. BV is the intersection between the straight line

defined by the two tangential points to the ellipse i (BiCi) and one of the two tangent lines to the ellipse j, here the one passing

through Cj.

To get the co-ordinates, it is necessary to get the co-ordinates of Cj in the system defined on the ellipse i. That can be done

knowing the geometrical relations between the two ellipses (angle between the axis, co-ordinates of the centre in the new

system). Then we can continue the calculation as before. Sometimes two corrections are necessary, the second is treated in the

same way.

4.3.3. Calculation code

A numerical code has been written in order to calculate xu for several different configurations taking into account all the

geometrical considerations described before.
5. Results

Table 1 shows the variations of xu for randomly drawn

configurations, and for two different shapes of ellipsoid of

revolution characterised by the rate a/b. Fig. 10 shows all

the configurations used.

We note that, as we take more particles into account to

calculate xu, the variations between configurations become

less important, particularly when the shape is spheroidal (a/

b close to 1). So we can suppose that the variations

encountered in large, semi-infinite samples are even weaker

because far more particles are taken into account when a

reflectance measurement is done. So that is why we choose

the simplest configuration (configurations 8 and 9 in Fig.

10), to see the influence of particle shape on xu.

This approximation is easily justified for ellipsoidal

rather spherical particles, but it seems that xu is minimised

for rod shaped particles.

Fig. 11 shows the variations of xu as a function of the a/b

ratio in this simplest configuration. Fig. 12 shows the

evolution of the reflectance value as a function of a/b, all

the other parameters being kept constant.
We notice that the differences of xu seem to be important

in Fig. 11, but Fig. 12 shows that these differences have a

weak influence on the calculated reflectance, which is our

meaningful physical parameter. We therefore decided to

keep the initial value of 0.299 (which we round up to 0.3)

for xu. Even so, we must not forget that this approximate

value is probably too low for rod shaped particles.
6. Conclusion

This study shows that a coefficient, which can be quite

different for individual particles, can be ‘‘globalised’’ if we

take into account more particles, and then, we see that it

becomes less varying. This globalisation is justified because

in our problem, the property we want to be able to calculate

(i.e. reflectance of the powder) is not the individual property

of one particle but a collective property, which is the result

of the assembly of all the particles. It is not important to

know the colour of one isolated particle because there is

experimental evidence that this colour is modified by

neighbouring particles.



The conditions on the size and shape of the particles were

an important limitation for the use of this model. This study

allowed us to prove that the model can be used for industrial

powders having a major axis/minor axis ratio as high as 4.5,

which is the case of a large majority of industrial powder to

continue to adapt the model for use with industrial powders.

Results and applications are presented in [6].
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diffusion en vue de son application à des opérations industrielles sur

des poudres minérales. PhD thesis, Ecole des Mines de Saint-Etienne

and INP of Grenoble, 2000.

[6] H. Garay, O. Eterradossi, A. Benhassaine, Predicting changes in the

color of powders: does Melamed’s model fit to industrial powders?

Color Research and Application 29 (6) (2004) 413–419.

[7] P. Callet, De l’effet de la mouture des pigments sur la couleur des

poudres et des pigments, Revue Internationale de CFAO et d’Infog-

raphie 9 (6) (1994) 831–845.

[8] J.A. Dodds, Simplest Statistical geometric model of the simplest

version of the multicomponent random packing problem, Nature 256

(5514) (1975 (July)) 187–189.

[9] W. Nowacki, Symmetrie und physikalische Eigenschaften kristalli-
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