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ABSTRACT

Color Filter Array (CFA) represents a mosaic of incomplete
color information from a digital image. This paper presents
two edge detection methods performing directly on CFA
images, without the necessity of the demosaicing process,
thus saving significant computation steps. First, existing
methods for CFA images based on well-known Deriche re-
cursive filters are revisited. Then, new algorithms based on
Shen-Castan filters design are proposed. They correspond to
recursive first-order filters, outperforming the complexity of
other edge detection techniques. Finally, quantitative assess-
ments based on synthesized images using normalized Figure
of Merit evaluate the performances of the edge detection
methods, while qualitative results based on real images are
also reported, illustrating the new methods reliability.

Index Terms— CFA Image, Filtering, Edge Detection

1. INTRODUCTION AND MOTIVATIONS

In digital imaging, each pixel on a single-sensor camera con-
tains a color filter array (CFA) capturing only one wavelength
of light that only lets through one color [1]. Indeed, a cap-
tured image records the brightness of the red, green, and blue
pixels separately. A very common CFA is the Bayer matrix
(see Fig.1). An image of this pattern is called a CFA im-
age. To create full color information, the demosaicing process
is applied to the CFA image, several algorithms have been
proposed [2][3], amongst them the simplest ones are nearest
neighbor and bilinear interpolations.

Cameras equipped with CFA filters are portable and light-
weight, and are often used in embedded devices. Usually, fea-
ture extraction from images requires full-color information,
thus the CFA images are mostly demosaiced before being pro-
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Fig. 1: Bayer patterns on a CFA image and full-color image.

cessed. However, the demosaicing algorithm requires extra
computation, resulting in an undesirable inefficiency for ma-
chines with low performance. Consequently, for simplicity
and convenience, features may be extracted using grayscale
vision sensors indicating only the brightness of a pixel. In re-
sponse to the demand of feature extraction efficiency directly
on CFA images, Aberkane et al. [4] and Magnier et al. [5]
have proposed edge detection algorithms that operate based
on Deriche edge detector and bilinear interpolations [6].

In this paper, two edge detection approaches adjusting
Shen-Castan edge detector [7] are developed. They require
less computation steps than methods proposed in the litera-
ture. Then, the new algorithms are evaluated with synthetic
images and their performances versus complexity are re-
ported. Eventually, results on real-world images showed that
the proposed approaches achieved satisfying detection quality
while reducing considerably the algorithmic complexity.

2. THE SHEN-CASTAN EDGE DETECTOR

2.1. Recursive and separable filters for edge detection

In the field of image analysis and computer vision, edge de-
tection and extraction represent important image processing
tasks and are related to a wide range of application [8]. Edges
are associated with intensity changes in the gray level image
and constitute an efficient descriptor of the image structure.
In this context, several operators were developed in the liter-
ature [9]. Canny presented criteria for measuring the quality
of optimal edge detectors regarding one-dimensional (1D) Fi-
nite Impulse Response (FIR) filter [10]. The performances of
a detector are essentially characterized by:

• Detection with low error rate: the operator must give a
response in the vicinity of a contour.

• Localization: the contour must be precisely located.
• Unicity: an outline must elicit a single response from

the extraction operator.
Edge detection methods differ in the types of optimal filters
and one solution is the Gaussian filterGσ(t) = 1√

2πσ
·e−t

2/2σ2

,

where σ represents the standard deviation of the Gaussian.
Based on this design, several approaches were proposed to
edge detection utilizing Infinite Impulse Response (IIR) filters
which can be recursively implemented with high efficiency



(a) Smoothing filters

(b) Derivative filters (c) Convolution of a signal (in green) with low and high pass filters above.

Fig. 2: Comparison of 1D filters in (a)-(b) and convolution with a
noisy signal in (c)-top-. In (a), the parameters of the different filter
equations are chosen such that the smoothing filter support contains
98% of the filtered information, here: support = 13 sample points.

owing to low algorithmic cost. Indeed, Shen and Castan [7]
proposed an operator optimizing detection and localization
criteria. Its implementation is based on a first order recursive
exponential filter. The obtained smoothing filter is written by:

Sα(x) = c · e−α|x|, (1)

with c = 1−e−α
1−e+α the normalization coefficient. The α pa-

rameter defines the “width” of the filter: the smaller α is, the
greater the filter performs the smoothing. Thereafter, the high
pass filter Dα is tied to the derivative of Sα with Dα(0)=0
(Fig.2 (a)-(b)) for symmetrical reasons:

Dα(x) =


c · e−αx if x > 0

0 if x = 0

−c · e αx if x < 0.

(2)

Thus, the first order discontinuity at point 0 constitutes a
sharp filter, as illustrated in Fig. 2(c). Thanks to the separa-
bility property, the smoothed image is given by:

IS (x, y) = (I(x, y) ∗ Sα(x)) ∗ Sα(y), (3)

where “∗” represents the product of convolution, I the origi-
nal image and (x, y) the pixel coordinates. The low-pass filter
Sα is applied successively horizontally and vertically (or in-
versely). Elsewhere, the image derivative using these filters
is equivalent to using the 2D derivative filter (Fig. 3(c)); it
can also be obtained by filter separability using a horizontal
derivative with Dα(x) and a vertical smoothing with Sα(y):

Ix(x, y) = (I(x, y) ∗Dα(x)) ∗ Sα(y), (4)

for a x-derivative of the image. The y-derivative is computed
by applying a vertical Dα and a horizontal Sα filters on a gray
level image. Regarding two dimensions, the Shen-Castan fil-
ter preserves its sharp shape, as illustrated in Fig. 3(c). Hence,
it makes it possible to avoid a significant delocalization of
the contours in the smoothed image, even with low α values.
Both Sα and Dα represent first ordered recursive filters, al-
lowing the (very) fast computation of image derivatives.

Otherwise, based on Canny’s design, the IIR Deriche filter
has analytical expression allowing an exact recursive imple-
mentation of order 2 [6]. The smoothing part is given by:

Hα(x) = a · (α|x|+ 1) · e−α|x|, (5)

It is also separable and the derivative part corresponds to:

K α(x) = b · x · e−α|x|, (6)

with a and b two normalization coefficients [6]. The α param-
eter tunes these filters as for Sα and Dα: the bigger α is, the
less the filter smoothes the signal (thin and sharp filter) and
prioritizes the edge localization. On the contrary, when α is
decreasing, the filter appears increasingly more like a Gaus-
sian (see Fig. 2(a)). Consequently, edges of small object are
more precisely extracted using Shen-Castan algorithm, as il-
lustrated in Fig. 2(a)-(b) and Fig. 3(d)-(e). Moreover, Sα filter
computes a gradient norm less extended and offers the pos-
sibility to detect separately two close contours without any
delocalization caused by the regularization filter, contrary to
Gaussian or Deriche filters.

Despite its inability to respond to all of Canny’s crite-
ria, the Shen-Castan filter offers a lower algorithmic cost than
the Deriche filter, along with satisfying results on contour lo-
calization regarding gray level images. These characteristics
may be attractive in domains as embedded systems, where
the algorithm complexity must be adjusted as a function of
the desired task and the machine power.

(a) Original image

90 × 90

(b) 2D derivative Deriche

filter, 𝛼 = 0.93
(c) 2D derivative Shen

filter, 𝛼 = 0.7

(d) Gradient norm and detected edges using standard Deriche filter, 𝛼 = 0.93.

(e) Gradient norm and detected edges using standard Shen filter, 𝛼 = 0.7.

Fig. 3: Comparison of 2D filter shapes and detected edges us-
ing standard Deriche and Shen-Castan filters on a gray level image.
Thresholds are selected by Rosin technique [11].



2.2. Structure Tensor: Di Zenzo gradient
A basic approach to compute a gradient of a color image is to
combine first order derivatives issued with each channel. The
best known color gradient was introduced by Di Zenzo [12]
which uses the partial derivatives along x and y of each red,
green and blue component. Those partial derivatives are gath-
ered in two vectors Ix=(IRx , I

G
x , I

B
x ) and Iy=(IRy , I

G
y , I

B
y ).

For each pixel, the gradient direction θ is chosen so the first
fundamental form dI2 is maximized:

dI2(θ) = f · cos2(θ)+2 · g · cos(θ) sin(θ)+h · sin2(θ), (7)

where f=Ix ·Ix=
∑
k=R,G,B

(
Ikx
)2

, g=Ix ·Iy=
∑
k=R,G,B

(
IkxI

k
y

)
and h=Iy ·Iy=

∑
k=R,G,B

(
Iky
)2

. This structure tensor provides
in every pixel the gradient direction θ∗ = argmax

θ∈[−π,π]

(
dI2(θ)

)
and its tied norm |∇I| = |dI2 (θ∗) |.

Eventually, edges can be extracted by thresholding local
maxima of the gradient norm in the θ∗ direction [10].

3. EDGE DETECTION FOR CFA IMAGES

Different from full-color image, the CFA image lacks infor-
mation at each pixel. Therefore, the edge detector cannot di-
rectly operate on CFA images as on full-color images, and
extra steps are necessary for the estimation of missing colors.

3.1. Deriche based approaches - SEDD and SDDE

In the works of Aberkane et al. [4] and Magnier et al. [5],
Deriche-based algorithms were proposed (Eqs. (5) and (6))
directly on the CFA image to extract contours.

As illustrated in Fig. 1, there are discontinuities (holes)
between pixels of the same colors in CFA images. However,
it is possible to obtain a seamless image in exchange for the
image resolution by down-sampling the pixels of the same
color channel from a CFA image and then reconstructing the
image without empty values. To solve this, Aberkane et al.
[4] introduced a spatial distance parameter (d) directly into
the Deriche filter implementation (Eqs. (5) and (6)), so that
the filters can be applied on CFA images the same way as
on a full image (image without empty values). Although the
filter is applied discretely using a spatial distance parameter,
the filter response remains discrete because for every pixel
there are still two colors missing.

Therefore, inspired by bilinear interpolation, Aberkane et
al. [4] proposed an empty-pixel estimation method to obtain
an integral filter response with no missing components, and
two methods were conceived: SEDD (Smoothed component
Estimation of Deriche Derivative) and SDDE (Smoothed De-
riche Derivative Estimation). This is achieved by finding 4
types of neighborhoods of a pixel P in a Bayer CFA image:
NH , NV , N+ and N×. The superscriptH (or V ) indicates that
the two neighboring horizontal (or vertical) pixels have the
same color component. The superscript + (or ×) indicates

that the four neighboring horizontal and vertical (or diago-
nal) pixels have the same color component (related to Fig.
1). As an example, considering the red pixels of a CFA im-
age, the estimated full-color pixel (i.e., a triple) is expressed
by: I(x, y) = (ICFA(x, y), ICFA,+(x, y), ICFA,×(x, y)), where
ICFA,+(x, y) = 1

4 ·
∑

(i,j)∈N+(x,y) ICFA(i, j). Other compo-
nents are as well easily computed, see [4].

On another note, the DRGC (Deriche derivative of Ro-
tated Green-Chrominance) method proposed by Magnier et
al. [5] operates on Bayer CFA images in the diagonal direc-
tions in order to obtain pixel continuity (see Fig. 1). Here,
the full color gradients are restored using bilinear interpola-
tion. Tab.1 reported the evaluation and complexity of Deriche
filters adapted to CFA images. The results showed that with-
out demosaicing process, the edge detection remains very ef-
ficient with low computation time. Thereafter, the proposed
methods offers a reduction in complexity.

3.2. Proposed Algorithms

For the sake of convenience, some notations are defined.
First, the notations of images are expressed as follows:

• Red Pixels and Blue Pixels respectively: PR and PB .
• Green Pixels to the right of the Red Pixels: PGr.
• Green Pixels to the left of the Blue Pixels: PGb.

Considering an image with three color channels, Shen-
Castan’s smoothing and derivation filters (Eqs.(1) and (2)) are
implemented by first-order recursive filtering. However, CFA
images have only one channel, so each pixel carries only one
color information, and the other two colors are considered
as empty values. The empty values are skipped by specify-
ing a spatial parameter d when applying the filter (see Sec.
3.1). Hence, by taking into account the d parameter, the new
smoothing recursive filter is built with the causal and anti-
causal parts IS−

x,α,d
and IS+

x,α,d
:

IS−
x,α,d

(x, y) = c·I(x, y) + e−α · IS−
x,α,d

(x−d, y), (8)

IS+
x,α,d

(x, y) = c·I(x+d, y) + e−α · IS+
x,α,d

(x+d, y). (9)

The smoothed CFA image along x i.e., IS,x, is computed by:

I(x, y) ∗ Sx,α,d(x, y) = IS+
x,α,d

(x, y) + IS−
x,α,d

(x, y), (10)

where Sx,α,d(x, y) indicates applying the horizontal smooth-
ing on a CFA image with a spatial distance d. The same
procedure is applied vertically, considering the vertical spa-
tial distance of d. Then, the horizontal derivative filter of Eq.
(2) is recursively implemented with the causal and anti-causal
parts in the following equations:

ID−
x,α,d

(x, y)=(1−e−α)·I(x, y) + e−α ·ID−
x,α,d

(x−d, y),

ID+
x,α,d

(x, y)=(e−α−1)·I(x+d, y) + e−α· ID+
x,α,d

(x+d, y).
(11)

Thus, the derivative image along x, i.e. ID ,x is computed by:

I(x, y) ∗Dx,α,d(x, y) = ID+
x,α,d

(x, y) + ID−
x,α,d

(x, y), (12)



where Dx,α,d(x, y) represents the horizontal derivative filter
on a CFA image with a spatial distance d (cf. Eq. 4). Lastly,
the same strategy is applied vertically to obtain a vertical
derivative, considering the vertical spatial distance d.

Once different notations have been properly defined, two
edge detection methods based on exponential Shen-Castan fil-
ter are proposed and adapted to Bayer CFA images.

3.2.1. First method: SESCD

SESCD (Smoothed components Estimation Shen-Castan
Derivative) applies first a smoothing filter with d=2 and
then estimates the missing components (empty pixels), im-
mediately after smoothing with Eqs. (9) and (8). Thus, the
smoothed component in the x-direction is obtained by:

ICFA
S ,x (x, y) = ICFA ∗ Sx,α,2(x, y). (13)

The y-direction is calculated the same way by replacing x
with y. The order of filters is not invertible in this case since
the estimation step is after the smoothing step. Here, the three
red, green and blue smoothed full channels are estimated for
each position of the PR, PGr , PGb and PB horizontally and
vertically by considering respectively IS ,x and IS ,y:

IS,x=


(ICFA

S,x , I
CFA,H
S,x , ICFA,×

S,x ),

(ICFA,H
S,x , ICFA

S,x , I
CFA,V
S,x ),

(ICFA,V
S,x , ICFA

S,x , I
CFA,H
S,x ),

(ICFA,×
S,x , ICFA,H

S,x , ICFA
S,x ),

IS,y=


(ICFA

S,y , I
CFA,V
S,y , ICFA,×

S,y ), forPR
(ICFA,H

S,y , ICFA
S,y , I

CFA,V
S,y ), forPGr

(ICFA,V
S,y , ICFA

S,y , I
CFA,H
S,y ), forPGb

(ICFA,×
S,y , ICFA,V

S,y , ICFA
S,y ), forPB .

(14)

Once obtained the fully smoothed image for the 3 color
channels, the Shen-Castan derivative filter is applied with
d=1. Finally, the full derivatives are simply computed by
Ix(x, y)=IS ,y ∗Dx,α,1(x, y) and Iy(x, y)=IS ,x ∗Dy,α,1(x, y) for
each channel before applying Di Zenzo tensor, as in Sec. 2.2.

3.2.2. Second method: SSCDE

In the SSCDE (Smoothed Shen-Castan Derivative Estima-
tion) algorithm, the derivative filter is applied with d=2, ac-
cording to Eq. (11). Then, the missing components are esti-
mated before smoothing. Once obtained the full color infor-
mation, the smoothing filter with d=1 is applied to the image
derivative. An example is presented in Fig. 4.

SSCDE differs from SESCD (Sec. 3.2.1) in the order
of missing component estimation. As described earlier,
in SESCD, the full-color information is restored after the
smoothing process, then the derivative is calculated. On the
contrary, in SSCDE, before applying the smoothing filter,
the full-color restoration is performed immediately after the
image derivative by:

ICFA
D ,x (x, y) = ICFA ∗Dx,α,2(x, y). (15)

The y-derivative is obtained by applying Dy,α,2 vertically.
Note that the estimation formulae of SSCDE are identi-

cal to SESCD (Eq. (14)). The full-color derivative ID ,x and
ID ,y are calculated simply by replacing IS with ID in the

fulfil empty pixels 
by linear 

interpolations

Fig. 4: Flowchart of SSCDE algorithm.

missing-components estimation formulae. Thus, the fully de-
fined derivatives of a CFA image are estimated by Eq. (14).

Thereafter, the smoothing filter is applied with the classic
parameters d=1 to calculate the fully defined gradient com-
ponents in x-direction Ix(x, y) = ID ,x ∗ Sy,α,1(x, y) and in
y-direction Iy(x, y) = ID ,y ∗ Sx,α,1(x, y) respectively for the
3 color components. At last, Di Zenzo tensor is applied to
compute the gradient norm and to extract edges (see Sec. 2.2).

4. EDGE DETECTORS EVALUATION AND RESULTS

4.1. Algorithms Complexity

For evaluating the performances of the proposed algorithms,
implementations were made in Python and C API. Conse-
quently, the complexities of the algorithms are easily com-
pared since they are implemented in the same way. The al-
gorithmic complexity per pixel is calculated according to the
number of arithmetic operations (addition, subtraction, mul-
tiplication and division) without taking into account branch-
ing instructions or memory accesses. The compared methods
involve 3 algorithmic procedures: filtering, missing compo-
nents estimation (Interp.) and image rotation (for DRGC).

Standard Deriche’s filters require 15 smoothing and 16
derivations per pixel (see [4]). LetH denote the image height
and L the image width, SEDD (Smoothed Estimation of De-
riche Derivatives) [4] and SESCD are estimated to require
20H×L

4
operations per pixel according to Eq. (14).

In that respect, the number of operations for a smoothing
or derivation is calculated by M×N×Q×T , with:
• M , the number of image channels,
• N , the number of operations per pixel,
• Q, the number of times the filter is applied,
• T , the number of applied filter directions.

The results are summarized in Tab.1. Standard Deriche and
Shen-Castan algorithms adapted on full-color images (Sec.
2.2) involves the demosaicing process, corresponding to 30 to
1212 steps per pixel depending on the algorithm [3][4]. Note
also that the DRGC method has 2×3 rotation steps [5].



(a) Synthesized (b) Bayer CFA (c) True Edge, (d) SEDD[4], (e) SDDE[4], (f) SESCD, (g) SSCDE,
image image (Ground truth) N =0.82 N =0.82 N =0.79 N = 0.81

Fig. 5: Edges detected from image corrupted by a Gaussian blur and a Gaussian white noise (σ = 8)

4.2. Edge detection evaluation

To evaluate the edge detection, the Normalized Figure of
Merit method proposed in [13] is employed. Let Gt be the
reference contour map corresponding to the ground truth and
Dc the detected contour map of an image. Comparing pixel
by pixel Gt and Dc, a simple evaluation based on pixel-wise
comparison leads to the definition of the following indicators:

• True Positive (TP ), common points of Gt and Dc,
• False Positive (FP ), spurious detected edges of Dc,
• False Negative (FN ), missing boundary points of Dc,
• True Negative (TN ), common non-edge points.

Thus, as described in [13], the normalized N edge detection
evaluation measure is, for FN>0 or FP>0:

N (Gt,Dc)=
FP

Er ·|Dc|
∑
p∈Dc

1

1+δd2Gt(p)
+

FN

Er ·|Gt|
∑
p∈Gt

1

1+κd2Dc(p)
,

with Er = (FP + FN) and where (δ, κ)∈]0, 1]2 represent two
scale parameters [13]. Meanwhile, | · | denotes the cardinal-
ity of a set, and dA(p) is the minimal Euclidian distance be-
tween a pixel p and a set A. So, if there are no error, i.e.,
FP=FN=0, then it corresponds to a perfect score: N =1.
Therefore, the measure N calculates a standardized dissim-
ilarity score; the closer the evaluation score is to 1, the more
the edge detection is qualified as suitable.

Evaluation of experiments is carried out on 486 synthetic
CFA images, knowing the true edges [14]. Then a Gaussian
blur and noises are added (Fig. 5(a)) to assess the robust-
ness of the algorithms. For each filter width (parameter α),
the threshold that gives the best evaluation score is recorded.
Then, the average score over the 486 images is calculated and
recorded as a function of α ranged from 0.1 to 3.0 by a step
of 0.1. Finally, the maximum average score N as well as its
corresponding filter parameter is estimated. As an example,
the average score of SSCDE method reaches its maximum at

Method Smoothing Derivation Interp. Total N Score
Deriche [6] 3×15×1×2 3×16×1×2 - 186+Demosaic 97.66%
Shen-Castan[7] 3×7×1×2 3×7×1×2 - 84+Demosaic 97.27%

SEDD [4] 1×15×1×2 3×16×1×2 5×2 136 95.92%
SDDE [4] 3×15×1×2 1×16×1×2 5×2 132 95.77%
DRGC [5] 1×15×1×2 1×16×1×2 2×2 72+6 (Sec.4.1) 95.56%
SESCD 1×7×1×2 3×7×1×2 5×2 66 95.62%
SSCDE 3×7×1×2 1×7×1×2 5×2 66 95.73%

Table 1: Algorithmic complexity of edge detection filters.

α=0.7, see N in Tab. 1 and plotted curves in Fig. 6(a). Vi-
sually in Fig. 5, SSCDE detects more precisely edges than
SESCD, especially on the most interior circle.

The evaluation process above is applied on SESCD and
SSCDE methods, as well as on SEDD and SDDE. It appears
that SEDD achieves the most reliable result. Nevertheless,
the proposed approach SSCDE obtains a better score than
SESCD (Tab. 1) and a less noisy edge map as shown in Fig.
5(g). Generally, the number of operations versus the best N
scores are plotted in Fig. 6(b). The upper-leftmost algorithm
obtains the most robust performance while requires the lowest
complexity. Hence, the Shen-Castan adapted Bayer CFA ap-
proaches (SESCD and SSCDE) require a nearly half number
of operations of those considering Deriche filters.

4.3. Experiments on Real Images

Regarding real images presented in Fig. 7, the automatic
Rosin thresholding is applied here [11], giving satisfying
visual results in term of continuity of detected edges. Oth-
erwise, the classical Shen-Castan edge detector applied to
full-color images is used as a reference for the proposed al-
gorithms (SSCDE) which detect the edges directly from CFA
images. The selected filter parameter is tied to the highest
evaluation score: α=0.7 (Fig. 6). In this respect, edges de-
tected by SSCDE are visually of the same quality as those
obtained by Shen-Castan algorithm for full-color images, il-
lustrating the reliability of the proposed method. In another
respect, note that false edges may be created when a contour
is blurred, due to the filter’s sensitivity or interpolations, and
that very close edges may create checkerboard binary pixels.

Similarly, other experiments are presented in additional
results file, containing comparison with SESCD technique.
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Fig. 6: Evaluation and complexity of tested algorithms.



(a) Edge detection on full colour images using Shen-Castan classical filter and Di Zenzo structure tensor.

(b) Edge detection on CFA Bayer images using SSCDE algorithm followed by Di Zenzo structure tensor.

Image 512×512 Image 512×480 Image 384×288 Image 320×256 Image 512×512 Image 768×512

Fig. 7: Visual comparison between classical Shen-Castan versus SSCDE method with automatic thresholding [11].

5. CONCLUSION
Two recursive edge detection filters of order 1 are proposed
in this study. Inspired by existing literature, two Shen-Castan
based edge detection algorithms have been developed, namely
SESCD and SSCDE. They differ from each other only in the
order in which the missing components are estimated. The re-
cursive implementation performs with great efficiency, reduc-
ing the time of calculation to half of the Deriche approach.

Besides, edge detection score of SSCDE is slightly higher
than SESCD, for the same complexity. For real-world CFA
images, edges detected directly are equivalent to those ob-
tained after a demoisaicing process, while requiring much less
computational complexity. As the computational complexity
per pixel is low, several applications may employ the gradient
or edges calculated by SSCDE. Features extracted using this
filtering technique should be very useful for applications on
embedded devices.
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SHEN-CASTAN BASED EDGE DETECTION METHODS FOR BAYER CFA IMAGES:
ADDITIONAL RESULTS

Address - Line 1
Address - Line 2
Address - Line 3

  (a) Bayer CFA image                        (b) SESCD on (a)                        (c) SSCDE on (a) 

(d) Demoisaiced image of (a)          (e) Standard Shen-Castan

      ARI method [1]                             edge detection on (d)

(h) Full color image from [3]

(f) Demoisaiced image of (a)           (g) Standard Shen-Castan

ACPI method [2]                            edge detection on (f)

Fig. 1: Comparison of CFA methods and traditional methods on demosaiced Kodak image No.19 [3].
Adaptive Color Plane Interpolation (ACPI) [2] is a simple demosaicking procedure consisting in making a
bilinear interpolation in the direction perpendicular to the gradient. Adaptative Residual Interpolation (ARI)
[1] interpolates colors in a residual domain and produces visually satisfying images, but has a very high
computational complexity. BE CAREFUL: compressed files.
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[2] J. F. Hamilton and J. E. Adams, “Adaptive color plan interpolation in single sensor color electronic cam-
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256×256 256×256 256×256 256×256 256×256 256×256 481×321 450×375

481×321 481×321481×321481×321321×481481×321321×481 321×481

512×768 768×512 768×512 321×481 321×481768×512321×481768×512321×481

Fig. 2: Additional Results (arranged in rows): binary images are calculated by Rosin method (see original
paper).
From top to bottom: Original Full-Color Image, Bayer CFA Image, Edge detected by SESCD, Edge detected
by SSCDE. BE CAREFUL: compressed files.
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