Shen-Castan Based Edge Detection Methods for Bayer CFA Images - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

Shen-Castan Based Edge Detection Methods for Bayer CFA Images


Color Filter Array (CFA) represents a mosaic of incomplete color information from a digital image. This paper presents two edge detection methods performing directly on CFA images, without the necessity of the demosaicing process, thus saving significant computation steps. First, existing methods for CFA images based on well-known Deriche re-cursive filters are revisited. Then, new algorithms based on Shen-Castan filters design are proposed. They correspond to recursive first-order filters, outperforming the complexity of other edge detection techniques. Finally, quantitative assessments based on synthesized images using normalized Figure of Merit evaluate the performances of the edge detection methods, while qualitative results based on real images are also reported, illustrating the new methods reliability.
Fichier principal
Vignette du fichier
CFA_EUVIP_2021_total.pdf (4.42 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03248561 , version 1 (03-06-2021)



Zian Li, Arezki Aberkane, Baptiste Magnier. Shen-Castan Based Edge Detection Methods for Bayer CFA Images. EUVIP2021 - 9th European Workshop on Visual Information Processing, Jun 2021, Paris (virtuel), France. ⟨10.1109/EUVIP50544.2021.9484026⟩. ⟨hal-03248561⟩
166 Consultations
173 Téléchargements



Gmail Facebook Twitter LinkedIn More