Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Can Knowledge Graph Embeddings Tell Us What Fact-checked Claims Are About?

Abstract : The web offers a wealth of discourse data that help researchers from various fields analyze debates about current societal issues and gauge the effects on society of important phenomena such as misinformation spread. Such analyses often revolve around claims made by people about a given topic of interest. Fact-checking portals offer partially structured information that can assist such analysis. However, exploiting the network structure of such online discourse data is as of yet under-explored. We study the effectiveness of using neural-graph embedding features for claim topic prediction and their complementarity with text em-beddings. We show that graph embeddings are modestly complementary with text embed-dings, but the low performance of graph embedding features alone indicate that the model fails to capture topological features pertinent of the topic prediction task.
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger
Contributeur : Andon Tchechmedjiev Connectez-vous pour contacter le contributeur
Soumis le : mardi 3 novembre 2020 - 12:35:44
Dernière modification le : lundi 10 octobre 2022 - 11:32:06
Archivage à long terme le : : jeudi 4 février 2021 - 18:30:48


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale 4.0 International License



Valentina Beretta, Katarina Boland, Luke Lo Seen, Sébastien Harispe, Konstantin Todorov, et al.. Can Knowledge Graph Embeddings Tell Us What Fact-checked Claims Are About?. Workshop on Insights from Negative Results in NLP, Nov 2020, Online, Dominican Republic. ⟨10.18653/v1/2020.insights-1.11⟩. ⟨hal-02986882⟩



Consultations de la notice


Téléchargements de fichiers