L. Alfieri, P. Salamon, F. Pappenberger, F. Wetterhall, and J. Thielen, Operational early warning systems for water-related hazards in Europe, Environmental Science & Policy, pp.35-49, 2012.

M. Champion, Les inondations en France du VIème siècle à nos jours, 1859.

F. Lenne, Crues de la Liane, 2013.

O. Azahaf, Création de réseaux de neurones pour la prévision des crues. Stage de M2 Mathématiques Appliquées de l, 2007.

R. J. Abrahart and L. M. See, Neural network modelling of non-linear hydrological relationships, Hydrology and Earth System Sciences, vol.11, issue.5, pp.1563-1579, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00305094

G. Dreyfus, Neural Networks: Methodology and Applications, Softcover reprint of hardcover, 2005.

K. Hornik, M. Stinchcombe, and H. White, Multilayer Feedforward Networks Are Universal Approximators, Neural Networks, vol.2, pp.359-366, 1989.

A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Transactions on Information Theory, pp.930-945, 1993.

O. Nerrand, P. Roussel-ragot, L. Personnaz, G. Dreyfus, and S. Marcos, Neural networks and nonlinear adaptive filtering: unifying concepts and new algorithms, Neural Computation, vol.5, issue.2, pp.165-199, 1993.

G. Artigue, A. Johannet, V. Borrell, and S. Pistre, Flash flood forecasting in poorly gauged basins using neural networks: case study of the Gardon de Mialet basin, Nat Hazards Earth Syst Sci, vol.12, issue.11, pp.3307-3324, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02365588

S. Geman, E. Bienenstock, and R. Doursat, Neural networks and the bias/variance dilemma, Neural Computation, vol.4, issue.1, pp.1-58, 1992.

M. Stone, Cross-validatory choice and assessment of statistical forecasting, Journal of the Royal Statistical Society, vol.36, pp.111-147, 1974.

L. Kong-a-siou, A. Johannet, V. Borrell, and S. Pistre, Complexity selection of a neural network model for karst flood forecasting: The case of the Lez Basin (southern France), Journal of Hydrology, vol.403, pp.367-380, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00656598

L. Kong-a-siou, A. Johannet, B. E. Valérie, and S. Pistre, Optimization of the generalization capability for rainfall-runoff modeling by neural networks: the case of the Lez aquifer (southern France), Environmental Earth Sciences, vol.65, issue.8, pp.2365-2375, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02410326

G. Schoups, N. C. Van-de-giesen, and H. G. Savenije, Model complexity control for hydrologic prediction, Water Resource Research, vol.44, issue.12, pp.0-03, 2008.

J. Sjöberg and L. Ljung, Overtraining, regularization and searching for minimum in neural networks, Preprint IFAC Symposium on Adaptive Systems in Control and Signal Processing, 1994.

M. T. Hagan and M. B. Menhaj, Training feedforward networks with the Marquardt algorithm, IEEE Trans. Neural Netw, vol.5, issue.6, pp.989-993, 1994.

T. Darras, A. Johannet, B. Vayssade, L. Kong-a-siou, and S. Pistre, Influence of the Initialization of Multilayer Perceptron for Flash Floods Forecasting: How Designing a Robust Model, Granada, ITISE Conference, pp.687-698, 2014.

M. Toukourou, A. Johannet, G. Dreyfus, and P. Ayral, Rainfall-runoff modeling of flash floods in the absence of rainfall forecasts: the case of "Cévenol flash floods, Journal of Applied Intelligence, vol.35, issue.2, pp.1078-189, 2011.

L. Kong-a-siou, A. Johannet, V. Estupina, and S. Pistre, Neural networks for karst groundwater management: case of the Lez spring (Southern France), Environmental Earth Sciences, vol.74, issue.12, pp.7617-7632, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02053378

J. E. Nash and J. V. Sutcliffe, River flow forecasting through conceptual models part I -A discussion of principles, Journal of hydrology, vol.10, issue.3, pp.282-290, 1970.

P. K. Kitadinis and R. Bras, Real time forecasting with a conceptual hydrologic model, applications and results, Water Resources Research, vol.16, pp.1034-1044, 1980.

L. Oudin, C. Michel, and F. Anctil, Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 1-Can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs, Journal of Hydrology, vol.303, pp.275-289, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02584169

L. Oudin, F. Hervieu, C. Michel, C. Perrin, V. Andréassian et al., Which potential evapotranspiration input for a lumped rainfall-runoff model? Part 2-Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling, Journal of Hydrology, vol.303, pp.290-306, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02584170

L. Kong-a-siou, P. Fleury, A. Johannet, V. Borrell-estupina, S. Pistre et al., Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer, Journal of Hydrology, vol.519, pp.3178-3192, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02047991