D. Villa, F. Mandelbaum, B. R. Lemak, and L. J. , The Effect of Playing Position on Injury Risk in Male Soccer Players: Systematic Review of the Literature and Risk Considerations for Each Playing Position, Am. J. Orthop, vol.47, pp.1-11, 2018.

C. M. Jones, P. C. Griffiths, and S. D. Mellalieu, Training Load and Fatigue Marker Associations with Injury and Illness: A Systematic Review of Longitudinal Studies, vol.47, 2017.

P. Gómez-piqueras, S. Gonzalez-villora, M. Sainz-de-baranda-andujar, and O. Contreras-jordan, Functional Assessment and Injury Risk in a Professional Soccer Team, vol.5, 2017.

T. J. Gabbett, The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes, J. Strength Cond. Res, vol.24, pp.2593-2603, 2010.

J. Borresen, M. Lambert, and M. I. Lambert, The quantification of training load, the training response and the effect on performance, vol.39, pp.779-795, 2009.

F. M. Impellizzeri, E. Rampinini, A. J. Coutts, A. Sassi, and S. M. Marcora, Use of RPE-based training load in soccer, Med. Sci. Sports Exerc, vol.36, pp.1042-1047, 2004.

D. Casamichana, J. Castellano, J. Calleja-gonzalez, J. S. Roman, and C. Castagna, Relationship between indicators of training load in soccer players, J. Strength Cond. Res, vol.27, pp.369-374, 2013.

M. B. Randers, I. Mujika, A. Hewitt, J. Santisteban, R. Bischoff et al., Application of four different football match analysis systems: A comparative study, J. Sports Sci, vol.28, pp.171-182, 2010.

G. Vigne, C. Gaudino, I. Rogowski, G. Alloatti, and C. Hautier, Activity profile in elite Italian soccer team, Int. J. Sports Med, vol.31, pp.304-310, 2010.

D. Salvo, V. Baron, R. Tschan, H. Calderon-montero, F. J. Bachl et al., Performance characteristics according to playing position in elite soccer, Int. J. Sports Med, vol.28, pp.222-227, 2007.

C. Carling, J. Bloomfield, L. Nelsen, and T. Reilly, The role of motion analysis in elite soccer: Contemporary performance measurement techniques and work rate data, Sports Med, vol.38, pp.839-862, 2008.

M. J. Colby, B. Dawson, J. Heasman, B. Rogalski, and T. J. Gabbett, Accelerometer and GPS-derived running loads and injury risk in elite Australian footballers, J. Strength Cond. Res, vol.28, pp.2244-2252, 2014.

R. Akenhead and G. P. Nassis, Training load and player monitoring in high-level football: Current practice and perceptions, Int. J. Sports Physiol. Perform, vol.11, pp.587-593, 2016.

J. Raya-gonzalez, F. Y. Nakamura, D. Castillo, J. Yanci, and M. Fanchini, Determining the relationship between internal load markers and noncontact injuries in young elite soccer players, Int. J. Sports Physiol. Perform, vol.14, pp.421-425, 2019.

M. Haddad, J. Padulo, and K. Chamari, The usefulness of session rating of perceived exertion for monitoring training load despite several influences on perceived exertion, Int. J. Sports Physiol. Perform, vol.9, pp.882-883, 2014.

S. Malone, M. Roe, D. A. Doran, T. J. Gabbett, and K. Collins, High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football, J. Sci. Med. Sport, vol.20, pp.250-254, 2017.

J. D. Bartlett, F. O'connor, N. Pitchford, L. Torres-ronda, and S. J. Robertson, Relationships between internal and external training load in team-sport athletes: Evidence for an individualized approach, Int. J. Sports Physiol. Perform, vol.12, pp.230-234, 2017.

J. G. Claudino, D. O. De-capanema, T. V. De-souza, J. C. Serrao, A. C. Machado-pereira et al., Current Approaches to the Use of Artificial Intelligence for Injury Risk Assessment and Performance Prediction in Team Sports: A Systematic Review, Sports Med. Open, vol.5, 2019.

A. Rossi, L. Pappalardo, P. Cintia, F. M. Iaia, J. Fernandez et al., Effective injury forecasting in soccer with GPS training data and machine learning, PLoS ONE, vol.13, 2018.

G. Roe, J. Darrall-jones, C. Black, W. Shaw, K. Till et al., Validity of 10 Hz GPS and Timing Gates for Assessing Maximum Velocity in Professional Rugby Union Players, Int. J. Sports Physiol. Perform, vol.12, pp.836-839, 2017.

E. Rampinini, G. Alberti, M. Fiorenza, M. Riggio, R. Sassi et al., Accuracy of GPS devices for measuring high-intensity running in field-based team sports, Int. J. Sports Med, vol.36, pp.49-53, 2015.

E. Rampinini, D. Bishop, S. M. Marcora, D. Ferrari-bravo, R. Sassi et al., Validity of simple field tests as indicators of match-related physical performance in top-level professional soccer players, Int. J. Sports Med, vol.28, pp.228-235, 2007.

D. Salvo, V. Gregson, W. Atkinson, G. Tordoff, P. Drust et al., Analysis of high intensity activity in premier league soccer, Int. J. Sports Med, vol.30, pp.205-212, 2009.

S. Barrett, A. Midgley, and R. Lovell, PlayerLoadTM: Reliability, convergent validity, and influence of unit position during treadmill running, Int. J. Sports Physiol. Perform, vol.9, pp.945-952, 2014.

R. A. Fisher, The Use of Multiple Measurements in Taxonomic Problems, Ann. Eugen, vol.7, pp.179-188, 1936.

G. Mclachlan, Discriminant Analysis and Statistical Pattern Recognition, 2004.

M. E. Maron, Automatic Indexing: An Experimental Inquiry, J. ACM, vol.8, pp.404-417, 1961.

I. Rish, An empirical study of the naive Bayes classifier, Proceedings of the International Joint Conference Artificial Intelligence, pp.41-46, 2001.

L. Breiman, J. Friedman, and C. J. Stone, Classification Algorithms and Regression Trees, Classif. Regres. Trees, pp.246-280, 1984.

L. Breiman, Random Forests, Mach. Learn, vol.45, pp.5-32, 2001.

B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the 5th Annual Workshop on Computational Learning Theory (COLT 92), pp.144-152, 1992.

P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences, 1974.

W. S. Mcculloch and W. Pitts, A. logical calculus nervous activity, Bull. Math. Biol, vol.52, pp.99-115, 1943.
URL : https://hal.archives-ouvertes.fr/hal-00305592

F. Rosenblatt and . Frosenblatt, Psychol. Rev, vol.65, pp.1-23, 1958.

T. Jebara, Machine Learning: Discriminative and Generative, 2004.

A. Jaspers, T. O. De-beéck, M. S. Brink, W. G. Frencken, F. Staes et al., Relationships between the external and internal training load in professional soccer: What can we learn from machine learning?, Int. J. Sport. Physiol. Perform, vol.13, pp.625-630, 2018.

A. E. Saw, L. C. Main, and P. B. Gastin, Monitoring the athlete training response: Subjective self-reported measures trump commonly used objective measures: A systematic review, Br. J. Sport. Med, vol.50, pp.281-291, 2016.

S. L. Halson, Monitoring training load to understand fatigue in athletes, Sport. Med, vol.44, pp.139-147, 2014.

F. M. Clemente, B. Mendes, P. T. Nikolaidis, F. Calvete, S. Carrico et al., Internal training load and its longitudinal relationship with seasonal player wellness in elite professional soccer, Physiol. Behav, vol.179, pp.262-267, 2017.