M. Biron, Polymères alvéolaires-Présentation et propriétés, vol.23, p.3, 2003.

A. Kramschuster and L. Turng, An injection molding process for manufacturing highly porous and interconnected biodegradable polymer matrices for use as tissue engineering scaffolds, J. Biomed. Mater. Res. B Appl. Biomater, vol.9999, 2009.

W. Zhang, B. Chen, H. Zhao, P. Yu, D. Fu et al., Processing and characterization of supercritical CO 2 batch foamed poly(lactic acid)/poly(ethylene glycol) scaffold for tissue engineering application, J. Appl. Polym. Sci, vol.130, pp.3066-3073, 2013.

X. Jing, H. Mi, T. Cordie, M. Salick, X. Peng et al., Fabrication of Porous Poly(?-caprolactone) Scaffolds Containing Chitosan Nanofibers by Combining Extrusion Foaming, Leaching, and Freeze-Drying Methods, Ind. Eng. Chem. Res, vol.53, pp.17909-17918, 2014.

L. Diaz-gomez, C. A. García-gonzález, J. Wang, F. Yang, S. Aznar-cervantes et al., Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration, Int. J. Pharm, vol.527, pp.115-125, 2017.

X. Jing, H. Mi, and L. Turng, Comparison between PCL/hydroxyapatite (HA) and PCL/halloysite nanotube (HNT) composite scaffolds prepared by co-extrusion and gas foaming, Mater. Sci. Eng. C, vol.72, pp.53-61, 2017.

D. Maio, E. Kiran, and E. , Foaming of polymers with supercritical fluids and perspectives on the current knowledge gaps and challenges, J. Supercrit. Fluids, vol.134, pp.157-166, 2018.

J. ?t?pek and H. Daoust, Chemical and Physical Blowing Agents, Additives for Plastics, pp.112-123, 1983.

S. Quinn, Chemical blowing agents: Providing production, economic and physical improvements to a wide range of polymers, Plast. Addit. Compd, vol.3, pp.16-21, 2001.

N. Le-moigne, M. Sauceau, M. Chauvet, J. Bénézet, and J. Fages, Microcellular Foaming of (Nano)Biocomposites by Continuous Extrusion Assisted by Supercritical CO 2, ACS Symposium Series

A. Ayoub and L. Lucia, , vol.1304, pp.171-188, 2018.

N. Najafi, M. Heuzey, P. J. Carreau, D. Therriault, and C. B. Park, Rheological and foaming behavior of linear and branched polylactides, Rheol. Acta, vol.53, pp.779-790, 2014.

M. Sauceau, C. Nikitine, E. Rodier, and J. Fages, Effect of supercritical carbon dioxide on polystyrene extrusion, J. Supercrit. Fluids, vol.43, pp.367-373, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01829541

M. Nofar and C. B. Park, Poly (lactic acid) foaming, Prog. Polym. Sci, vol.39, pp.1721-1741, 2014.

S. P. Nalawade, F. Picchioni, and L. P. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications, Prog. Polym. Sci, vol.31, pp.19-43, 2006.

S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: Cell growth and skin formation, Polym. Eng. Sci, vol.34, pp.1148-1156, 1994.

S. K. Goel and E. J. Beckman, Nucleation and growth in microcellular materials: Supercritical CO 2 as foaming agent, AIChE J, vol.41, pp.357-367, 1995.

S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I: Effect of pressure and temperature on nucleation, Polym. Eng. Sci, vol.34, pp.1137-1147, 1994.

J. E. Weller and V. Kumar, Solid-state microcellular polycarbonate foams. I. The steady-state process space using subcritical carbon dioxide, Polym. Eng. Sci, vol.50, pp.2160-2169, 2010.

J. E. Weller and V. Kumar, Solid-state microcellular polycarbonate foams. II. The effect of cell size on tensile properties, Polym. Eng. Sci, vol.50, pp.2170-2175, 2010.

M. Wessling, Z. Borneman, . Van-den, T. Boomgaard, and C. A. Smolders, Carbon dioxide foaming of glassy polymers, J. Appl. Polym. Sci, vol.53, pp.1497-1512, 1994.

V. Kumar, M. Vanderwel, J. Weller, and K. A. Seeler, Experimental Characterization of the Tensile Behavior of Microcellular Polycarbonate Foams, J. Eng. Mater. Technol, vol.116, pp.439-445, 1994.

J. W. Lee, K. Wang, and C. B. Park, Challenge to Extrusion of Low-Density Microcellular Polycarbonate Foams Using Supercritical Carbon Dioxide, Ind. Eng. Chem. Res, vol.44, pp.92-99, 2005.

V. Kumar and P. J. Stolarczuk, Microcellular PET Foams Produced by the Solid State Process, Imaging and Image Analysis Applications for Plastics, pp.241-247, 1999.

C. Fan, C. Wan, F. Gao, C. Huang, Z. Xi et al., Extrusion foaming of poly(ethylene terephthalate) with carbon dioxide based on rheology analysis, J. Cell. Plast, vol.52, pp.277-298, 2016.

D. Li, T. Liu, L. Zhao, and W. Yuan, Controlling sandwich-structure of PET microcellular foams using coupling of CO 2 diffusion and induced crystallization, AIChE J, vol.58, pp.2512-2523, 2012.

H. Zhong, Z. Xi, T. Liu, Z. Xu, and L. Zhao, Integrated process of supercritical CO 2 -assisted melt polycondensation modification and foaming of poly(ethylene terephthalate), J. Supercrit. Fluids, vol.74, pp.70-79, 2013.

K. A. Arora, A. J. Lesser, and T. J. Mccarthy, Preparation and Characterization of Microcellular Polystyrene Foams Processed in Supercritical Carbon Dioxide, Macromolecules, vol.31, pp.4614-4620, 1998.

J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations, Polym. Eng. Sci, vol.27, pp.485-492, 1987.

C. M. Stafford, T. P. Russell, and T. J. Mccarthy, Expansion of Polystyrene Using Supercritical Carbon Dioxide: Effects of Molecular Weight, Polydispersity, and Low Molecular Weight Components, Macromolecules, vol.32, pp.7610-7616, 1999.

E. Reverchon and S. Cardea, Production of controlled polymeric foams by supercritical CO 2, J. Supercrit. Fluids, vol.40, pp.144-152, 2007.

X. Han, K. W. Koelling, D. L. Tomasko, and L. J. Lee, Continuous microcellular polystyrene foam extrusion with supercritical CO 2, Polym. Eng. Sci, vol.42, pp.2094-2106, 2002.

P. Handa, Y. Wong, B. Zhang, Z. Kumar, V. Eddy et al., Some thermodynamic and kinetic properties of the system PETG-CO 2 , and morphological characteristics of the CO 2 -blown PETG foams, Polym. Eng. Sci, vol.39, pp.55-61, 1999.

P. Handa, B. Wong, Z. Zhang, V. Kumar, S. Eddy et al., CO 2 -Blown PETG Foams, Imaging and Image Analysis Applications for Plastics, pp.165-171, 1999.

C. A. Diaz and L. M. Matuana, Continuous extrusion production of microcellular rigid PVC, J. Vinyl Addit. Technol, vol.15, pp.211-218, 2009.

Z. Xu, X. Jiang, T. Liu, G. Hu, L. Zhao et al., Foaming of polypropylene with supercritical carbon dioxide, J. Supercrit. Fluids, vol.41, pp.299-310, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00270670

C. B. Park and L. K. Cheung, A study of cell nucleation in the extrusion of polypropylene foams, Polym. Eng. Sci, vol.37, pp.1-10, 1997.

C. Yang, Z. Xing, Q. Zhao, M. Wang, and G. Wu, A strategy for the preparation of closed-cell and crosslinked polypropylene foam by supercritical CO 2 foaming, J. Appl. Polym. Sci, vol.135, 2018.

Z. Yang, T. Liu, D. Hu, Z. Xu, and L. Zhao, Foaming window for preparation of microcellular rigid polyurethanes using supercritical carbon dioxide as blowing agent, J. Supercrit. Fluids, vol.147, pp.254-262, 2019.

W. Zhai, W. Feng, J. Ling, and W. Zheng, Fabrication of Lightweight Microcellular Polyimide Foams with Three-Dimensional Shape by CO 2 Foaming and Compression Molding, Ind. Eng. Chem. Res, vol.51, pp.12827-12834, 2012.

J. Reignier, R. Gendron, and M. F. Champagne, Autoclave Foaming of Poly(?-Caprolactone) Using Carbon Dioxide: Impact of Crystallization on Cell Structure, J. Cell. Plast, vol.43, pp.459-489, 2007.

S. Cotugno, E. Di-maio, G. Mensitieri, S. Iannace, G. W. Roberts et al., Characterization of Microcellular Biodegradable Polymeric Foams Produced from Supercritical Carbon Dioxide Solutions, Ind. Eng. Chem. Res, vol.44, pp.1795-1803, 2005.

A. Salerno, E. Di-maio, S. Iannace, and P. A. Netti, Solid-state supercritical CO 2 foaming of PCL and PCL-HA nano-composite: Effect of composition, thermal history and foaming process on foam pore structure, J. Supercrit. Fluids, vol.58, pp.158-167, 2011.

H. Zhang, G. M. Rizvi, and C. B. Park, Development of an extrusion system for producing fine-celled HDPE/wood-fiber composite foams using CO 2 as a blowing agent, Adv. Polym. Technol, vol.23, pp.263-276, 2004.

T. Kuang, H. Mi, D. Fu, X. Jing, B. Chen et al., Fabrication of Poly(lactic acid)/Graphene Oxide Foams with Highly Oriented and Elongated Cell Structure via Unidirectional Foaming Using Supercritical Carbon Dioxide, Ind. Eng. Chem. Res, vol.54, pp.758-768, 2015.

G. Gedler, M. Antunes, and J. I. Velasco, Effects of graphene nanoplatelets on the morphology of polycarbonate-graphene composite foams prepared by supercritical carbon dioxide two-step foaming, J. Supercrit. Fluids, vol.100, pp.167-174, 2015.

Y. H. Lee, T. Kuboki, C. B. Park, and M. Sain, The effects of nanoclay on the extrusion foaming of wood fiber/polyethylene nanocomposites, Polym. Eng. Sci, vol.51, pp.1014-1022, 2011.

X. Han, C. Zeng, L. J. Lee, K. W. Koelling, and D. L. Tomasko, Extrusion of polystyrene nanocomposite foams with supercritical CO 2, Polym. Eng. Sci, vol.43, pp.1261-1275, 2003.

N. Le-moigne, M. Sauceau, M. Benyakhlef, R. Jemai, J. Benezet et al., Foaming of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/organo-clays nano-biocomposites by a continuous supercritical CO 2 assisted extrusion process, Eur. Polym. J, vol.61, pp.157-171, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01611610

M. Chauvet, M. Sauceau, and J. Fages, Extrusion assisted by supercritical CO 2 : A review on its application to biopolymers, J. Supercrit. Fluids, vol.120, pp.408-420, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01335023

A. J. Lasprilla, G. A. Martinez, B. H. Lunelli, A. L. Jardini, and R. M. Filho, Poly-lactic acid synthesis for application in biomedical devices-A review, Biotechnol. Adv, vol.30, pp.321-328, 2012.

L. Lim, R. Auras, and M. Rubino, Processing technologies for poly(lactic acid), Prog. Polym. Sci, vol.33, pp.820-852, 2008.

S. Farah, D. G. Anderson, and R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review, Adv. Drug Deliv. Rev, vol.107, pp.367-392, 2016.

R. Auras, B. Harte, and S. Selke, An Overview of Polylactides as Packaging Materials, Macromol. Biosci, vol.4, pp.835-864, 2004.

D. E. Henton, P. Gruber, J. Lunt, and J. Randall, Polylactic Acid Technology, Natural Fibers

T. Group, , vol.1, pp.527-576, 2005.

S. Inkinen, M. Hakkarainen, A. Albertsson, and A. Södergård, From Lactic Acid to Poly(lactic acid) (PLA): Characterization and Analysis of PLA and Its Precursors, Biomacromolecules, vol.12, pp.523-532, 2011.

J. Shao, S. Xiang, X. Bian, J. Sun, G. Li et al., Remarkable Melting Behavior of PLA Stereocomplex in Linear PLLA/PDLA Blends, Ind. Eng. Chem. Res, vol.54, pp.2246-2253, 2015.

D. Notta-cuvier, A. Bouzouita, J. Odent, R. Delille, M. Murariu et al., PLA) pour des Applications Automobiles, p.20, 2018.

J. Ahmed and S. K. Varshney, Polylactides-Chemistry, Properties and Green Packaging Technology: A Review, Int. J. Food Prop, vol.14, pp.37-58, 2011.

A. Tor-?wi?tek, T. Garbacz, V. Sedlarik, P. Stloukal, and P. Kucharczyk, Influence of Polylactide Modification with Blowing Agents on Selected Mechanical Properties, Adv. Sci. Technol. Res. J, vol.11, pp.206-214, 2017.

J. Seo, J. Han, K. S. Lee, and S. W. Cha, Combined Effects of Chemical and Microcellular Foaming on Foaming Characteristics of PLA (Poly Lactic Acid) in Injection Molding Process, Polym.-Plast. Technol. Eng, vol.51, pp.455-460, 2012.

J. Ludwiczak and M. Kozlowski, Dynamic Mechanical Properties of Foamed Polylactide and Polylactide/Wood Flour Composites, J. Biobased Mater. Bioenergy, vol.9, pp.227-230, 2015.

J. Ludwiczak and M. Kozlowski, Foaming of Polylactide in the Presence of Chain Extender, J. Polym. Environ, vol.23, pp.137-142, 2015.

A. Huang, H. Kharbas, T. Ellingham, H. Mi, L. Turng et al., Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid) composites: Mechanical Properties, Crystallization Characteristics, and Foaming Behavior of Polytetrafluoroethylene-Reinforced Poly(Lactic Acid) Composites, Polym. Eng. Sci, vol.57, pp.570-580, 2017.

H. Zhao, X. Yan, G. Zhao, and Z. Guo, Microcellular injection molded polylactic acid/poly (?-caprolactone) blends with supercritical CO 2 : Correlation between rheological properties and their foaming behavior, Polym. Eng. Sci, vol.56, pp.939-946, 2016.

A. Ameli, M. Nofar, D. Jahani, G. Rizvi, and C. B. Park, Development of high void fraction polylactide composite foams using injection molding: Crystallization and foaming behaviors, Chem. Eng. J, vol.262, pp.78-87, 2015.

A. Ameli, D. Jahani, M. Nofar, P. U. Jung, and C. B. Park, Processing and characterization of solid and foamed injection-molded polylactide with talc, J. Cell. Plast, vol.49, pp.351-374, 2013.

S. Pradeep, H. Kharbas, L. Turng, A. Avalos, J. Lawrence et al., Investigation of Thermal and Thermomechanical Properties of Biodegradable PLA/PBSA Composites Processed via Supercritical Fluid-Assisted Foam Injection Molding, vol.9, 2017.

X. Sun, H. Kharbas, J. Peng, and L. Turng, A novel method of producing lightweight microcellular injection molded parts with improved ductility and toughness, Polymer, vol.56, pp.102-110, 2015.

V. Volpe, M. De-filitto, V. Klofacova, F. De-santis, and R. Pantani, Effect of processing conditions on the cell morphology distribution in foamed injection molded PLA samples, Proceedings of the AIP Conference, p.60007, 1914.

V. Volpe, M. De-filitto, V. Klofacova, F. De-santis, and R. Pantani, Effect of mold opening on the properties of PLA samples obtained by foam injection molding, Polym. Eng. Sci, vol.58, pp.475-484, 2018.

G. Wang, G. Zhao, S. Wang, L. Zhang, and C. B. Park, Injection-molded microcellular PLA/graphite nanocomposites with dramatically enhanced mechanical and electrical properties for ultra-efficient EMI shielding applications, J. Mater. Chem, vol.6, pp.6847-6859, 2018.

P. Tiwary, C. B. Park, and M. Kontopoulou, Transition from microcellular to nanocellular PLA foams by controlling viscosity, branching and crystallization, Eur. Polym. J, vol.91, pp.283-296, 2017.

G. Li, H. Li, L. S. Turng, S. Gong, and C. Zhang, Measurement of gas solubility and diffusivity in polylactide, Fluid Phase Equilibria, vol.246, pp.158-166, 2006.

P. Chen, W. Wang, Y. Wang, K. Yu, H. Zhou et al., Crystallization-induced microcellular foaming of poly (lactic acid) with high volume expansion ratio, Polym. Degrad. Stab, vol.144, pp.231-240, 2017.

X. Wang, H. Zhou, B. Liu, Z. Du, and H. Li, Chain Extension and Foaming Behavior of Poly(lactic acid) by Functionalized Multiwalled Carbon Nanotubes and Chain Extender, Adv. Polym. Technol, vol.33, 2014.

W. Zhai, Y. Ko, W. Zhu, A. Wong, and C. Park, A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO 2, Int. J. Mol. Sci, vol.10, pp.5381-5397, 2009.

L. Xu and H. Huang, Foaming of Poly(lactic acid) Using Supercritical Carbon Dioxide as Foaming Agent: Influence of Crystallinity and Spherulite Size on Cell Structure and Expansion Ratio, Ind. Eng. Chem. Res, vol.53, pp.2277-2286, 2014.

J. Wang, W. Zhai, J. Ling, B. Shen, W. Zheng et al., Ultrasonic Irradiation Enhanced Cell Nucleation in Microcellular Poly(lactic Acid): A Novel Approach to Reduce Cell Size Distribution and Increase Foam Expansion, Ind. Eng. Chem. Res, vol.50, pp.13840-13847, 2011.

J. Liu, L. Lou, W. Yu, R. Liao, R. Li et al., Long chain branching polylactide: Structures and properties, Polymer, vol.51, pp.5186-5197, 2010.

D. Wu, Q. Lv, S. Feng, J. Chen, Y. Chen et al., Polylactide composite foams containing carbon nanotubes and carbon black: Synergistic effect of filler on electrical conductivity, Carbon, vol.95, pp.380-387, 2015.

L. Wei, H. Shicheng, and Z. Hongfu, Effect of octa(epoxycyclohexyl) POSS on thermal, rheology property, and foaming behavior of PLA composites, J. Appl. Polym. Sci, vol.135, p.46399, 2018.

H. Zhou, M. Zhao, Z. Qu, J. Mi, X. Wang et al., Thermal and Rheological Properties of Poly(lactic acid)/Low-Density Polyethylene Blends and Their Supercritical CO 2 Foaming Behavior, J. Polym. Environ, vol.26, pp.3564-3573, 2018.

Y. Corre, A. Maazouz, J. Duchet, and J. Reignier, Batch foaming of chain extended PLA with supercritical CO 2 : Influence of the rheological properties and the process parameters on the cellular structure, J. Supercrit. Fluids, vol.58, pp.177-188, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649102

E. Richards, R. Rizvi, A. Chow, and H. Naguib, Biodegradable Composite Foams of PLA and PHBV Using Subcritical CO 2, J. Polym. Environ, vol.16, pp.258-266, 2008.

B. Mallet, K. Lamnawar, and A. Maazouz, Compounding and Melt Strengthening of Poly(Lactic Acid): Shear and Elongation Rheological Investigations for Forming Process, Key Eng. Mater, pp.1751-1756, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00779949

S. Xue, P. Jia, Q. Ren, X. Liu, R. E. Lee et al., Improved expansion ratio and heat resistance of microcellular poly(L-lactide) foam via in-situ formation of stereocomplex crystallites, J. Cell. Plast, vol.54, pp.103-119, 2018.

A. Walallavita, C. J. Verbeek, and M. Lay, Blending Novatein ® thermoplastic protein with PLA for carbon dioxide assisted batch foaming, Proceedings of the AIP Conference Proceedings 1713, p.100006, 2016.

L. Yu, G. Toikka, K. Dean, S. Bateman, Q. Yuan et al., Foaming behaviour and cell structure of poly(lactic acid) after various modifications: Foaming and cell structure of PLA after modification, Polym. Int, vol.62, pp.759-765, 2013.

X. Shi, L. Wang, Y. Kang, J. Qin, J. Li et al., Effect of poly(butylenes succinate) on the microcellular foaming of polylactide using supercritical carbon dioxide, J. Polym. Res, vol.25, p.229, 2018.

H. Zhao, G. Zhao, L. Turng, and X. Peng, Enhancing Nanofiller Dispersion Through Prefoaming and Its Effect on the Microstructure of Microcellular Injection Molded Polylactic Acid/Clay Nanocomposites, Ind. Eng. Chem. Res, vol.54, pp.7122-7130, 2015.

Å. Larsen and C. Neldin, Physical extruder foaming of poly(lactic acid)-processing and foam properties, Polym. Eng. Sci, vol.53, pp.941-949, 2013.

M. Mihai, M. A. Huneault, and B. D. Favis, Crystallinity development in cellular poly(lactic acid) in the presence of supercritical carbon dioxide, J. Appl. Polym. Sci, vol.113, pp.2920-2932, 2009.

J. Wang, W. Zhu, H. Zhang, and C. B. Park, Continuous processing of low-density, microcellular poly(lactic acid) foams with controlled cell morphology and crystallinity, Chem. Eng. Sci, vol.75, pp.390-399, 2012.

L. M. Matuana and C. A. Diaz, Study of Cell Nucleation in Microcellular Poly(lactic acid) Foamed with Supercritical CO 2 through a Continuous-Extrusion Process, Ind. Eng. Chem. Res, vol.49, pp.2186-2193, 2010.

M. Mihai, M. A. Huneault, and B. D. Favis, Rheology and extrusion foaming of chain-branched poly(lactic acid), Polym. Eng. Sci, vol.50, pp.629-642, 2010.

M. Chauvet, M. Sauceau, F. Baillon, and J. Fages, Mastering the structure of PLA foams made with extrusion assisted by supercritical CO 2 : ARTICLE, J. Appl. Polym. Sci, vol.134, 2017.

J. R. Dorgan, J. S. Williams, and D. N. Lewis, Melt rheology of poly(lactic acid): Entanglement and chain architecture effects, J. Rheol, vol.43, pp.1141-1155, 1999.

D. Carlson, P. Dubois, L. Nie, and R. Narayan, Free radical branching of polylactide by reactive extrusion, Polym. Eng. Sci, vol.38, pp.311-321, 1998.

Y. Di, S. Iannace, E. Di-maio, and L. Nicolais, Reactively Modified Poly(lactic acid): Properties and Foam Processing, Macromol. Mater. Eng, vol.290, pp.1083-1090, 2005.

J. R. Dorgan, J. Janzen, M. P. Clayton, S. B. Hait, and D. M. Knauss, Melt rheology of variable L content poly(lactic acid), J. Rheol, vol.49, pp.607-619, 2005.

R. Auras, L. T. Lim, S. Selke, and H. Tsuji, Poly(lactic acid): Synthesis, structures, properties, processing, and applications, Wiley Series on Polymer Engineering and Technology, 2010.

M. Righetti, P. Cinelli, N. Mallegni, C. Massa, S. Bronco et al., Thermal, Mechanical, and Rheological Properties of Biocomposites Made of Poly(lactic acid) and Potato Pulp Powder, Int. J. Mol. Sci, vol.20, p.675, 2019.

A. Bourmaud, J. Beaugrand, D. U. Shah, V. Placet, and C. Baley, Towards the design of high-performance plant fibre composites, Prog. Mater. Sci, vol.97, pp.347-408, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02131344

R. Siakeng, M. Jawaid, H. Ariffin, S. M. Sapuan, M. Asim et al., Natural fiber reinforced polylactic acid composites: A review, Polym. Compos, vol.40, pp.446-463, 2019.

S. Pilla, A. Kramschuster, J. Lee, G. K. Auer, S. Gong et al., Microcellular and Solid Polylactide-Flax Fiber Composites, Compos. Interfaces, vol.16, pp.869-890, 2009.

S. Pilla, S. G. Kim, G. K. Auer, S. Gong, and C. B. Park, Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends, Mater. Sci. Eng. C, vol.30, pp.255-262, 2010.

J. Chen and J. Liu, Batch-foamed biodegradable polylactide acid/organic modified montmorillonite clays and polylactide/sericite powder nanocomposites, J. Polym. Eng, vol.32, 2012.

R. Krishnamoorti and K. Yurekli, Rheology of polymer layered silicate nanocomposites, Curr. Opin. Colloid Interface Sci, vol.6, pp.464-470, 2001.

S. Sinha-ray and M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing, Prog. Polym. Sci, vol.28, pp.1539-1641, 2003.

S. C. Cifuentes, E. Frutos, R. Benavente, V. Lorenzo, and J. L. González-carrasco, Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis, J. Mech. Behav. Biomed. Mater, vol.65, pp.781-790, 2017.

H. Kargarzadeh, M. Mariano, J. Huang, N. Lin, I. Ahmad et al., Recent developments on nanocellulose reinforced polymer nanocomposites: A review, vol.132, pp.368-393, 2017.

N. Hijazi, N. Le-moigne, E. Rodier, M. Sauceau, T. Vincent et al., Biocomposite films based on poly(lactic acid) and chitosan nanoparticles: Elaboration, microstructural and thermal characterization: Poly(lactic acid)/chitosan nanoparticles biocomposite films, Polym. Eng. Sci, vol.59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01924005

M. Nofar, Effects of nano-/micro-sized additives and the corresponding induced crystallinity on the extrusion foaming behavior of PLA using supercritical CO 2, Mater. Des, vol.101, pp.24-34, 2016.

M. Nofar, A. Tabatabaei, and C. B. Park, Effects of nano-/micro-sized additives on the crystallization behaviors of PLA and PLA/CO 2 mixtures, Polymer, vol.54, pp.2382-2391, 2013.

S. Bocchini and G. Camino, Flammability and Thermal Stability in Clay/Polyesters Nano-Biocomposites, In Environmental Silicate Nano-Biocomposites

L. Avérous and E. Pollet,

. Springer, , pp.265-285, 2012.

A. Ladhar, M. Arous, H. Kaddami, M. Raihane, A. Kallel et al., AC and DC electrical conductivity in natural rubber/nanofibrillated cellulose nanocomposites, J. Mol. Liq, vol.209, pp.272-279, 2015.

A. Ladhar, M. Arous, H. Kaddami, M. Raihane, A. Kallel et al., Ionic hopping conductivity in potential batteries separator based on natural rubber-nanocellulose green nanocomposites, J. Mol. Liq, vol.211, pp.792-802, 2015.

A. Wong, H. Guo, V. Kumar, C. B. Park, N. P. Suh et al., Polymer Science and Technology

J. Martini-vvedensky, N. Suh, and F. Waldman, Microcellular Closed Cell Foams and Their Method of Manufacture, U.S. Patent, vol.4, 1984.

W. Ding, Development of Polylactic Acid/Cellulose Nanofiber Biocomposite Foams, 2016.

Y. Qiu, Q. Lv, D. Wu, W. Xie, S. Peng et al., Cyclic tensile properties of the polylactide nanocomposite foams containing cellulose nanocrystals, Cellulose, vol.25, pp.1795-1807, 2018.

R. Rizvi, B. Cochrane, H. Naguib, and P. C. Lee, Fabrication and characterization of melt-blended polylactide-chitin composites and their foams, J. Cell. Plast, vol.47, pp.283-300, 2011.

L. M. Matuana and O. Faruk, Effect of gas saturation conditions on the expansion ratio of microcellular poly(lactic acid)/wood-flour composites, Express Polym. Lett, vol.4, pp.621-631, 2010.

C. I. Boissard, P. Bourban, C. J. Plummer, R. C. Neagu, and J. E. Månson, Cellular biocomposites from polylactide and microfibrillated cellulose, J. Cell. Plast, vol.48, pp.445-458, 2012.

S. Y. Cho, H. H. Park, Y. S. Yun, and H. Jin, Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide, Macromol. Res, vol.21, pp.529-533, 2013.

J. Dlouhá, L. Suryanegara, and H. Yano, The role of cellulose nanofibres in supercritical foaming of polylactic acid and their effect on the foam morphology, Soft Matter, vol.8, 2012.

R. C. Neagu, M. Cuénoud, F. Berthold, P. Bourban, E. K. Gamstedt et al., The potential of wood fibers as reinforcement in cellular biopolymers, J. Cell. Plast, vol.48, pp.71-103, 2012.

M. T. Zafar, S. Kumar, R. K. Singla, S. N. Maiti, and A. K. Ghosh, Surface Treated Jute Fiber Induced Foam Microstructure Development in Poly(lactic acid)/Jute Fiber Biocomposites and their Biodegradation Behavior, Fibers Polym, vol.19, pp.648-659, 2018.

D. J. Kang, D. Xu, Z. X. Zhang, K. Pal, D. S. Bang et al., Well-Controlled Microcellular Biodegradable PLA/Silk Composite Foams Using Supercritical CO 2, Macromol. Mater. Eng, vol.294, pp.620-624, 2009.

Y. Wang, Y. Song, J. Du, Z. Xi, and Q. Wang, Preparation of Desirable Porous Cell Structure Polylactide/Wood Flour Composite Foams Assisted by Chain Extender, Materials, vol.10, p.999, 2017.

Y. Ema, M. Ikeya, and M. Okamoto, Foam processing and cellular structure of polylactide-based nanocomposites, Polymer, vol.47, pp.5350-5359, 2006.

T. Standau, C. Zhao, S. Murillo-castellón, C. Bonten, and V. Altstädt, Chemical Modification and Foam Processing of Polylactide (PLA), Polymers, vol.11, 2019.

J. Xu, Design of Microcellular Injection Molding, Microcellular Injection Molding

J. Xu and . Ed, , pp.165-226, 2010.

G. Anderson and . Xu, J. Injection Molding Screw. U.S. Patent, vol.7, p.13, 2003.

H. Guanghong and W. Yue, Microcellular Foam Injection Molding Process. In Some Critical Issues for Injection Molding

J. Wang, . Ed, and . Intech, , 2012.

P. Xie, G. Wu, Z. Cao, Z. Han, Y. Zhang et al., Effect of Mold Opening Process on Microporous Structure and Properties of Microcellular Polylactide-Polylactide Nanocomposites, vol.10, 2018.

M. T. Zafar, N. Zarrinbakhsh, A. K. Mohanty, M. Misra, S. N. Maiti et al., Biocomposites based on poly(lactic acid)/willow-fiber and their injection moulded microcellular foams, Express Polym. Lett, vol.10, pp.176-186, 2016.

W. Ding, D. Jahani, E. Chang, A. Alemdar, C. B. Park et al., Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors, Compos. Part Appl. Sci. Manuf, vol.83, pp.130-139, 2016.

J. Xu, Microcellular Injection Molding; Wiley series on polymer engineering and technology, 2010.

A. P. Mathew, K. Oksman, and M. Sain, The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid, J. Appl. Polym. Sci, vol.101, pp.300-310, 2006.

A. N. Frone, S. Berlioz, J. Chailan, and D. M. Panaitescu, Morphology and thermal properties of PLA-cellulose nanofibers composites, Carbohydr. Polym, vol.91, pp.377-384, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01364144

S. J. Eichhorn, C. A. Baillie, N. Zafeiropoulos, L. Y. Mwaikambo, M. P. Ansell et al., Review: Current international research into cellulosic fibres and composites, J. Mater. Sci, vol.36, pp.2107-2131, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00307712

L. Matuana-malanda, C. B. Park, and J. J. Balatinecz, Characterization of Microcellular Foamed PVC/Cellulosic-Fibre Composites, J. Cell. Plast, vol.32, pp.449-469, 1996.

N. Najafi, M. Heuzey, P. J. Carreau, D. Therriault, and C. B. Park, Mechanical and morphological properties of injection molded linear and branched-polylactide (PLA) nanocomposite foams, Eur. Polym. J, vol.73, pp.455-465, 2015.

L. Chen, X. Wang, R. Straff, and K. Blizard, Shear stress nucleation in microcellular foaming process, Polym. Eng. Sci, vol.42, pp.1151-1158, 2002.

A. Kramschuster, S. Gong, L. Turng, T. Li, and T. Li, Injection-Molded Solid and Microcellular Polylactide and Polylactide Nanocomposites, J. Biobased Mater. Bioenergy, vol.1, pp.37-45, 2007.

C. G. Munters and . Gudbrand, J. Heat Insulation. U.S. Patent, vol.2, 1931.

S. T. Lee and C. B. Park, Foam Extrusion: Principles and Practice, 2014.

S. T. Lee, L. Kareko, and J. Jun, Study of Thermoplastic PLA Foam Extrusion, J. Cell. Plast, vol.44, pp.293-305, 2008.

K. Bocz, T. Tabi, D. Vadas, M. Sauceau, J. Fages et al., Characterisation of natural fibre reinforced PLA foams prepared by supercritical CO 2 assisted extrusion, Express Polym. Lett, vol.10, pp.771-779, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01341088

M. Keshtkar, M. Nofar, C. B. Park, and P. J. Carreau, Extruded PLA/clay nanocomposite foams blown with supercritical CO 2, Polymer, vol.55, pp.4077-4090, 2014.

W. Liu, X. Wang, H. Li, Z. Du, and C. Zhang, Study on rheological and extrusion foaming behaviors of chain-extended poly (lactic acid)/clay nanocomposites, J. Cell. Plast, vol.49, pp.535-554, 2013.

M. Okamoto, P. H. Nam, P. Maiti, T. Kotaka, T. Nakayama et al., Biaxial Flow-Induced Alignment of Silicate Layers in Polypropylene/Clay Nanocomposite Foam, Nano Lett, vol.1, pp.503-505, 2001.

T. Rokkonen, H. Peltola, and D. Sandquist, Foamability and viscosity behavior of extrusion foamed PLA-pulp fiber biocomposites, J. Appl. Polym. Sci, vol.136, 2019.

L. M. Matuana and C. A. Diaz, Strategy To Produce Microcellular Foamed Poly(lactic acid)/Wood-Flour Composites in a Continuous Extrusion Process, by the authors. Licensee MDPI, vol.52, 2013.