A. Abouimrane, D. Dambournet, K. W. Chapman, P. J. Chupas, W. Weng et al., A new class of lithium and sodium rechargeable batteries based on selenium and selenium-sulfur as a positive electrode, Journal of the American Chemical Society, vol.134, issue.10, pp.4505-4508, 2012.

A. M. Ali, R. H. Subban, H. Bahron, T. Winie, F. Latif et al., Grafted natural rubber-based polymer electrolytes: ATR-FTIR and conductivity studies, vol.14, pp.491-500, 2008.

R. D. Alves, L. C. Rodrigues, J. R. Andrade, A. Pawlicka, L. Pereira et al., Study and characterization of a novel polymer electrolyte based on agar doped with magnesium triflate, Molecular Crystals and Liquid Crystals, vol.570, issue.1, pp.1-11, 2013.

J. R. Andrade, E. Raphael, and A. Pawlicka, Plasticized pectin-based gel electrolytes, Electrochimica Acta, vol.54, issue.26, pp.6479-6483, 2009.

S. Arnott, A. Fulmer, W. E. Scott, I. C. Dea, R. Moorhouse et al., The agarose double helix and its function in agarose gel structure, Journal of Molecular Biology, vol.90, issue.2, pp.269-284, 1974.

A. Awadhiya, S. Tyeb, K. Rathore, and V. Verma, Agarose bioplastic-based drug delivery system for surgical and wound dressings, Engineering in Life Sciences, vol.17, issue.2, pp.204-214, 2017.

B. Boury and S. Plumejeau, Metal oxides and polysaccharides: An efficient hybrid association for materials chemistry, Green Chemistry, vol.17, issue.1, pp.72-88, 2015.

D. Bresser, S. Lyonnard, C. Iojoiu, L. Picard, and S. Passerini, Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes, Molecular Systems Design & Engineering, vol.4, issue.4, pp.779-792, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02133615

P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nature Materials, vol.11, issue.1, pp.19-29, 2012.

C. Chen and L. Hu, Nanocellulose toward advanced energy storage devices: Structure and electrochemistry, Accounts of Chemical Research, vol.51, issue.12, pp.3154-3165, 2018.

S. Chen, J. Zheng, D. Mei, K. S. Han, M. H. Engelhard et al., High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes, Advanced Materials, vol.30, issue.21, p.1706102, 2018.

X. Cheng, C. Yan, X. Zhang, H. Liu, and Q. Zhang, Electronic and ionic channels in working interfaces of lithium metal anodes, ACS Energy Letters, vol.3, issue.7, pp.1564-1570, 2018.

S. Choudhary and R. J. Sengwa, Investigations on ionic conduction in amides +glycerol binary mixtures, Journal of Molecular Liquids, vol.167, pp.99-102, 2012.

Z. Fang, Q. Ma, P. Liu, J. Ma, Y. Hu et al., Novel concentrated Li[(FSO2)(n-C4F9SO2)N]-based ether electrolyte for superior stability of metallic lithium anode, ACS Applied Materials & Interfaces, vol.9, issue.5, pp.4282-4289, 2017.

A. Firmino, J. G. Grote, F. Kajzar, J. C. M'peko, and A. Pawlicka, DNA-based ionic conducting membranes, Journal of Applied Physics, vol.110, issue.3, p.33704, 2011.

S. A. Foord and E. D. Atkins, New x-ray diffraction results from agarose: Extended single helix structures and implications for gelation mechanism, Biopolymers, vol.28, issue.8, pp.1345-1365, 1989.

N. A. Ghani, R. Othaman, A. Ahmad, F. H. Anuar, and N. H. Hassan, Impact of purification on iota carrageenan as solid polymer electrolyte, Arabian Journal of Chemistry, vol.12, issue.3, pp.370-376, 2019.

Z. Hu, P. Hong, M. Liao, S. Kong, N. Huang et al.,

S. Li, Preparation and characterization of chitosan-Agarose composite films, Materials, vol.9, issue.10, p.816, 2016.

G. Hwang, J. Kim, D. Hong, C. Kim, N. Choi et al., surface tailoring of polypropylene separator with a polydopamine/graphene layer, Advanced Energy Materials, vol.8, issue.36, p.1802665, 2016.

J. Kim, C. Kim, S. Yoo, J. Kim, J. Kim et al., , 2015.

, Agarose-biofunctionalized, dual-electrospun heteronanofiber mats: toward metal-ion chelating battery separator membranes, Journal of Materials Chemistry A, vol.3, issue.20, pp.10687-10692

M. Kouwijzer and S. Pérez, Molecular modeling of agarose helices, leading to the prediction of crystalline allomorphs, Biopolymers, vol.46, issue.1, pp.11-29, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02693966

Y. Lin, J. Li, K. Liu, Y. Liu, J. Liu et al., Unique starch polymer electrolyte for high capacity all-solid-state lithium sulfur battery, Green Chemistry, vol.18, issue.13, pp.3796-3803, 2016.

X. Liu, C. Shen, N. Gao, Q. Hou, F. Song et al.,

K. Xie, Concentrated electrolytes based on dual salts of LiFSI and LiODFB for lithium-metal battery, Electrochimica Acta, vol.289, pp.422-427, 2018.

D. Lu, Y. Shao, T. Lozano, W. D. Bennett, G. L. Graff et al., Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes, Advanced Energy Materials, vol.5, issue.3, p.1400993, 2015.

Q. Ma, Z. Fang, P. Liu, J. Ma, X. Qi et al., Improved cycling stability of lithium-metal anode with concentrated electrolytes based on lithium (fluorosulfonyl)(trifluoromethanesulfonyl)imide, ChemElectroChem, vol.3, issue.4, pp.531-536, 2016.

G. O. Machado, H. C. Ferreira, and A. Pawlicka, Influence of plasticizer contents on the properties of HEC-based solid polymeric electrolytes, Electrochimica Acta, vol.50, issue.19, pp.3827-3831, 2005.

L. Madec, V. Gabaudan, G. Gachot, L. Stievano, L. Monconduit et al., Paving the way for K-ion batteries: Role of electrolyte reactivity through the example of Sb-based electrodes, ACS Applied Materials & Interfaces, vol.10, issue.40, pp.34116-34122, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01896379

R. F. Marcondes, P. S. D'agostini, J. Ferreira, E. M. Girotto, A. Pawlicka et al., Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application, Solid State Ionics, vol.181, issue.13, pp.586-591, 2010.

B. Matsuhiro and P. Rivas, Second-derivative Fourier transform infrared spectra of seaweed galactans, Journal of Applied Phycology, vol.5, issue.1, pp.45-51, 1993.

R. I. Mattos, E. Raphael, S. R. Majid, A. K. Arof, and A. Pawlicka, Enhancement of electrical conductivity in plasticized chitosan based membranes, Molecular Crystals and Liquid Crystals, vol.554, issue.1, pp.150-159, 2012.

M. Mitsuiki, A. Mizuno, and M. Motoki, Determination of molecular weight of agars and effect of the molecular weight on the glass transition, Journal of Agricultural and Food Chemistry, vol.47, issue.2, pp.473-478, 1999.

N. N. Mobarak, N. Ramli, A. Ahmad, and M. Y. Rahman, Chemical interaction and conductivity of carboxymethyl ?-carrageenan based green polymer electrolyte, Solid State Ionics, vol.224, pp.51-57, 2012.

S. N. Mohamed, N. A. Johari, A. M. Ali, M. K. Harun, and M. Z. Yahya, Electrochemical studies on epoxidised natural rubber-based gel polymer electrolytes for lithium-air cells, Journal of Power Sources, vol.183, issue.1, pp.351-354, 2008.

M. Numata and S. Shinkai, Supramolecular wrapping chemistry" by helixforming polysaccharides: A powerful strategy for generating diverse polymeric nanoarchitectures, Chemical Communications, vol.47, issue.7, pp.1961-1975, 2011.

M. Okoshi, Y. Yamada, S. Komaba, A. Yamada, and H. Nakai, Theoretical analysis of interactions between potassium ions and organic electrolyte solvents: A comparison with Lithium, sodium, and magnesium ions, Journal of the Electrochemical Society, vol.164, issue.2, pp.54-60, 2016.

S. C. Pang, C. L. Tay, and S. F. Chin, Starch-based gel electrolyte thin films derived from native sago (Metroxylon sagu) starch, Ionics, vol.20, issue.10, pp.1455-1462, 2014.

A. Pawlicka, A. C. Sabadini, E. Raphael, and D. C. Dragunski, Ionic conductivity thermogravimetry measurements of starch-based polymeric electrolytes, Molecular Crystals and Liquid Crystals, vol.485, issue.1, pp.804-816, 2008.

J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard et al.,

J. Zhang, High rate and stable cycling of lithium metal anode, Nature Communications, vol.6, issue.1, p.6362, 2015.

M. Shin, W. Song, J. Han, C. Hwang, S. Lee et al., Metamorphosis of seaweeds into multitalented materials for energy storage applications, Advanced Energy Materials, vol.9, issue.19, 2019.

S. Spirk, Polysaccharides in batteries. Polysaccharides as battery components. Springer briefs in molecular science, 2018.

M. Stading, Dynamic mechanical analysis of biopolymers films, Annual Transaction of the Nordic Rheological Society, vol.6, pp.147-150, 1998.

L. Suo, Y. Hu, H. Li, M. Armand, and L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nature Communications, vol.4, issue.1, p.1481, 2013.

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, issue.6861, pp.359-367, 2001.

F. G. Torres, J. Arroyo, R. Alvarez, S. Rodriguez, O. Troncoso et al., , 2019.

, Carboxymethyl ?/?-hybrid carrageenan doped with NH4I as a template for solid bioelectrolytes development, Materials Chemistry and Physics, vol.223, pp.659-665

M. G. Vieira, M. A. Da-silva, L. O. Santos, and M. M. Beppu, Natural-based plasticizers and biopolymer films: A review, European Polymer Journal, vol.47, issue.3, pp.254-263, 2011.

M. Waqas, S. Ali, C. Feng, D. Chen, J. Han et al., Recent development in separators for high-temperature lithium-ion batteries, Small, vol.15, issue.33, 2019.

K. N. Wood, M. Noked, and N. P. Dasgupta, Lithium metal anodes: Toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior, ACS Energy Letters, vol.2, issue.3, pp.664-672, 2017.

F. Wu, Y. Yuan, X. Cheng, Y. Bai, Y. Li et al.,

Q. Zhang, Perspectives for restraining harsh lithium dendrite growth: Towards robust lithium metal anodes, Energy Storage Materials, vol.15, pp.148-170, 2018.

J. Xiang, L. Yang, L. Yuan, K. Yuan, Y. Zhang et al., Alkalimetal anodes: From lab to market, Joule, vol.3, issue.10, pp.2334-2363, 2019.

N. Xiao, W. D. Mcculloch, and Y. Wu, Reversible dendrite-free potassium plating and stripping electrochemistry for potassium secondary batteries, Journal of the American Chemical Society, vol.139, issue.28, pp.9475-9478, 2017.

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, vol.7, issue.2, pp.513-537, 2014.

K. Yan, H. Lee, T. Gao, G. Zheng, H. Yao et al., Ultrathin twodimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode, Nano Letters, vol.14, issue.10, pp.6016-6022, 2014.

C. Yang, Y. Yin, and Y. Guo, Elemental selenium for electrochemical energy storage, The Journal of Physical Chemistry Letters, vol.6, issue.2, pp.256-266, 2015.

C. Yang, Y. Yin, S. Zhang, N. Li, and Y. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nature Communications, vol.6, issue.1, p.8058, 2015.

Y. Yin, S. Xin, Y. Guo, and L. Wan, Lithium-sulfur batteries: Electrochemistry, materials, and prospects, Angewandte Chemie International Edition, vol.52, issue.50, pp.13186-13200, 2013.

H. B. Youcef, B. Orayech, J. M. Del-amo, F. Bonilla, D. Shanmukaraj et al., Functionalized cellulose as quasi single-ion conductors in polymer electrolyte for all-solid-state Li/Na and LiS batteries, Solid State Ionics, p.345, 2020.

S. Zhang, Z. Gao, W. Wang, Y. Lu, Y. Deng et al., A natural biopolymer film as a robust protective layer to effectively stabilize lithium-metal anodes, Small, vol.14, issue.31, p.1801054, 2018.

T. Zhang, T. Tian, B. Shen, Y. Song, and H. Yao, Recent advances on biopolymer fiber based membranes for lithium-ion battery separators, Composites Communications, vol.14, pp.7-14, 2019.

X. Zhang, A. Wang, X. Liu, and J. Luo, Dendrites in lithium metal anodes: Suppression, regulation, and elimination, Accounts of Chemical Research, vol.52, issue.11, pp.3223-3232, 2019.

G. Zheng, S. W. Lee, Z. Liang, H. Lee, K. Yan et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nature Nanotechnology, vol.9, issue.8, pp.618-623, 2014.

, Multifunctional natural agarose as an alternative material for high-performance rechargeable lithium-ion batteries, Green Chemistry, vol.18, issue.9, pp.2710-2716

Y. O. Iwaki, M. H. Escalona, J. R. Briones, and A. Pawlicka, Sodium alginate-based ionic conducting membranes, Molecular Crystals and Liquid Crystals, vol.554, issue.1, pp.221-231, 2012.

L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, and D. Beneventi, Cellulosebased Li-ion batteries: A review, Cellulose, vol.20, issue.4, pp.1523-1545, 2013.

S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes, Nature Energy, vol.3, issue.9, pp.739-746, 2018.

F. N. Jumaah, N. N. Mobarak, A. Ahmad, M. A. Ghani, and M. Y. Rahman, Derivative of iota-carrageenan as solid polymer electrolyte, Ionics, vol.21, issue.5, pp.1311-1320, 2015.

P. Kanmani and J. Rhim, Antimicrobial and physical-mechanical properties of agar-based films incorporated with grapefruit seed extract, Carbohydrate Polymers, vol.102, pp.708-716, 2014.

P. J. Kim and V. G. Pol, High performance lithium metal batteries enabled by, 2018.