Skip to Main content Skip to Navigation
Conference papers

Detection of Reading Absorption in User-Generated Book Reviews:Resources Creation and Evaluation

Abstract : To detect how and when readers are experiencing engagement with a literary work, we bring together empirical literary studies andlanguage technology via focusing on the affective state of absorption. The goal of our resource development is to enable the detectionof different levels of reading absorption in millions of user-generated reviews hosted on social reading platforms. We present a corpusof social book reviews in English that we annotated with reading absorption categories. Based on these data, we performed supervised,sentence level, binary classification of the explicit presence vs. absence of the mental state of absorption. We compared the performancesof classical machine learners where features comprised sentence representations obtained from a pretrained embedding model (UniversalSentence Encoder) vs. neural classifiers in which sentence embedding vector representations are adapted or fine-tuned while trainingfor the absorption recognition task. We discuss the challenges in creating the labeled data as well as the possibilities for releasing a benchmark corpus.
Document type :
Conference papers
Complete list of metadata

Cited literature [27 references]  Display  Hide  Download
Contributor : Administrateur IMT - Mines Alès Connect in order to contact the contributor
Submitted on : Monday, June 15, 2020 - 1:40:42 PM
Last modification on : Monday, June 27, 2022 - 3:06:44 AM


Publisher files allowed on an open archive


  • HAL Id : hal-02868319, version 1



Piroska Lendvai, Sándor Darányi, Christian Geng, Moniek Kuijper, Oier Lopez de Lacalle, et al.. Detection of Reading Absorption in User-Generated Book Reviews:Resources Creation and Evaluation. LREC 2020 - 12th Conference on Language Resources and Evaluation, 2020, Marseille, France. pp.4835-4841. ⟨hal-02868319⟩



Record views


Files downloads