Capillary wicking in bio-based reinforcements undergoing swelling – Dual scale consideration of porous medium - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Composites Part A: Applied Science and Manufacturing Année : 2020

Capillary wicking in bio-based reinforcements undergoing swelling – Dual scale consideration of porous medium

Résumé

Capillary wicking of liquids in natural fibrous reinforcements is a significant phenomenon in fibre-reinforced composites manufacturing through Liquid Composite Moulding (LCM) processes. Such phenomenon is however difficult to analyse due to heterogeneous, multiscale and variable fibrous medium during flow. Taking into account the fibre swelling, a modified Washburn’s model is proposed to predict the capillary rise of liquids in flax fibres. Particularly, swelling and wicking are studied at two different scales, i.e. elementary fibres and individual yarns. Swelling effects have been considered in the model and a modified Washburn’s theory has been developed. The proposed model satisfactory fits experimental results from capillary wicking tests, and hold for a 60% fibre volume fraction (Vf) of fabric on a relatively short duration while it fits well on a longer duration for lower Vf.
Fichier principal
Vignette du fichier
capillary-wicking.pdf (2 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02541875 , version 1 (07-05-2020)

Identifiants

Citer

H.N. Vo, Monica Francesca Pucci, S. Corn, Nicolas Le Moigne, W. Garat, et al.. Capillary wicking in bio-based reinforcements undergoing swelling – Dual scale consideration of porous medium. Composites Part A: Applied Science and Manufacturing, 2020, 134, pp.art. 105893. ⟨10.1016/j.compositesa.2020.105893⟩. ⟨hal-02541875⟩
189 Consultations
217 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More