F. Wendler, T. Schulze, D. Ciechanska, E. Wesolowska, D. Wawro et al., Cellulose Products from Solutions: Film, Fibres and Aerogels, The European Polysaccharide Network of Excellence
URL : https://hal.archives-ouvertes.fr/hal-00846175

P. Navard, . Ed, and . Springer, , 2012.

T. Heinze, K. Petzold-welcke, and J. Van-dam, Polysaccharides: Molecular and Supramolecular Structures. Terminology, The European Polysaccahride Network of Excellence

P. Navard, . Ed, and . Springer, , 2012.

S. Zhu, Y. Wu, Q. Chen, Z. Yu, C. Wang et al., Dissolution of cellulose with ionic liquids and its application: A mini-review, Green Chem, vol.8, pp.325-327, 2006.

M. Gericke, P. Fardim, and T. Heinze, Ionic Liquids-Promising but Challenging Solvents for Homogeneous Derivatization of Cellulose, Molecules, vol.17, pp.7458-7502, 2012.

M. Isik, H. Sardon, and D. Mecerreyes, Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials, Int. J. Mol. Sci, vol.15, pp.11922-11940, 2014.

D. Van-osch, L. Kollau, A. Bruinhorst, S. Asikainen, M. Rocha et al., Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation, Phys. Chem. Chem. Phys, vol.19, pp.2636-2665, 2017.

N. Mohd, S. Draman, M. Salleh, and N. Yusof, Dissolution of cellulose in ionic liquid: A review, AIP Conference Proceedings, vol.1809, p.20035, 2017.

Y. Pu, N. Jiang, and A. Ragauskas, Ionic Liquid as a Green Solvent for Lignin, J. Wood Chem. Technol, vol.27, pp.23-33, 2007.

M. Hossain and L. Aldous, Ionic Liquids for Lignin Processing: Dissolution, Isolation, and Conversion, Aust. J. Chem, vol.65, pp.1465-1477, 2012.

A. Diop, A. Bouazza, C. Daneault, and D. Montplaisir, New Ionic Liquid for the Dissolution of Lignin, Bioresources, vol.8, pp.4270-4282, 2013.

Z. Yinghuai, K. Yuanting, and N. Hosmane, Applications of Ionic Liquids in Lignin Chemistry, Ionic Liquids

J. Kadokawa, . Ed, and . Intechopen, , 2013.

A. Biswas, R. Shogren, D. Stevenson, J. Willett, and P. Bhowmik, Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein, Carbohydr. Polym, vol.66, pp.546-550, 2006.

R. Sescousse, R. Gavillon, and T. Budtova, Aerocellulose from cellulose-ionic liquid solutions: Preparation, properties and comparison with cellulose-NaOH and cellulose-NMMO routes, Carbohydr. Polym, vol.83, pp.1766-1774, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00574148

F. Wendler, F. Meister, D. Wawro, F. Wesolowska, D. Ciecha?ska et al., Polysaccharide Blend Fibres Formed from NaOH, N-Methylmorpholine-N-oxide and 1-Ethyl-3-methylimidazolium acetate, Fibres Text. East. Eur, vol.18, pp.21-30, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509555

J. Lazko, T. Sénéchal, N. Landercy, L. Dangreau, J. Raquez et al., Well defined thermostable cellulose nanocrystals via two-step ionic liquid swelling-hydrolysis extraction, Cellulose, vol.21, pp.4195-4207, 2014.

H. Vo, Y. Kim, E. Jeon, C. Kim, H. Kim et al., Ionic-Liquid-Derived, Water Soluble Ionic Cellulose, Chem. Eur. J, vol.18, pp.9019-9023, 2012.

M. Abe, Y. Fukaya, and H. Ohno, Extraction of polysaccharides from bran with phosphonate or phosphinate-derived ionic liquids under short mixing time and low temperature, Green Chem, vol.12, pp.1274-1280, 2010.

A. Diallo, C. Len, A. Morgan, and G. Marlair, Revisiting physico-chemical hazards of ionic liquids, Sep. Purif. Technol, vol.97, pp.228-234, 2012.
URL : https://hal.archives-ouvertes.fr/ineris-00961785

A. Diallo, A. Morgan, C. Len, and G. Marlair, An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids, Energy Environ. Sci, vol.6, pp.699-710, 2013.
URL : https://hal.archives-ouvertes.fr/ineris-00961793

R. Sonnier, L. Dumazert, S. Livi, T. Nguyen, J. Duchet-rumeau et al., Flame retardancy of phosphorus-containing ionic liquid based epoxy networks, Polym. Degrad. Stab, vol.134, pp.186-193, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01573464

Y. Shi, T. Fu, Y. Xu, D. Li, X. Wang et al., Novel phosphorus-containing halogen-free ionic liquid toward fire safety epoxy resin with well-balanced comprehensive performance, Chem. Eng. J, vol.354, pp.208-219, 2018.

A. Bentis, A. Boukhriss, D. Boyer, and S. Gmouh, Development of flame retardant cotton fabric based on ionic liquids via sol-gel technique, IOP Conf. Ser. Mater. Sci. Eng, vol.254, 2017.

R. Nishita, K. Kuroda, S. Ota, T. Endo, S. Suzuki et al., Flame-retardant thermoplastics derived from plant cell wall polymers by single ionic liquid substitution, N. J. Chem, vol.43, pp.2057-2064, 2013.

K. Hirosawa, K. Fujii, K. Hashimoto, and M. Shibayama, Solvated Structure of Cellulose in a Phosphonate-Based Ionic Liquid, Macromolecules, vol.50, pp.6333-6978, 2017.

W. Liu, S. Liu, T. Liu, T. Liu, J. Zhang et al., Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers, Carbohydr. Polym, vol.206, pp.141-148, 2019.

R. Blas-sevillano, T. Veramendi, B. La-torre, C. Velezmoro-sanchez, A. Oliva et al., Physicochemical characterization of several types of naturally colored cotton fibers from Peru, Carbohydr. Polym, vol.197, pp.246-252, 2018.

X. Chen, G. Pang, W. Shen, X. Tong, and M. Jia, Preparation and characterization of the ribbon-like cellulose nanocrystals by the cellulase enzymolysis of cotton pulp fibers, Carbohydr. Polym, vol.207, pp.713-719, 2019.

S. Chapple and R. Anandjiwala, Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review, J. Thermoplast. Compos. Mater, vol.23, pp.871-893, 2010.

R. Hajj, B. Otazaghine, R. Sonnier, R. El-hage, S. Rouif et al., Influence of monomer reactivity on radiation grafting of phosphorus flame retardants on flax fabrics, Polym. Degrad. Stab, vol.166, pp.86-98, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02425052

M. Lewin, Unsolved problems and unanswered questions in flame retardance of polymers, Polym. Degrad. Stab, vol.88, pp.13-19, 2005.

R. Swatloski, S. Spear, J. Holbrey, and R. Rogers, Dissolution of Cellulose with Ionic Liquids, JACS, vol.124, pp.4974-4975, 2002.

A. Basch and M. Lewin, The Influence of Fine Structure on the Flame Retardance of Cellulose, Text. Res. J, vol.45, pp.246-250, 1975.

P. Navard, F. Wender, F. Meister, M. Bercea, and T. Budtova, Preparation and properties of cellulose solutions, The European Polysaccharide Network of Excellence
URL : https://hal.archives-ouvertes.fr/hal-00776886

P. Navard, . Ed, and . Springer, , 2012.

M. Gericke, K. Schlufter, T. Liebert, T. Heinze, and T. Budtova, Rheological properties of cellulose/ionic liquid solutions: From dilute to concentrated states, Biomacromolecules, vol.10, pp.1188-1194, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509464

R. Sescousse, K. Anh-le, M. Ries, and T. Budtova, Viscosity of Cellulose?Imidazolium-Based Ionic Liquid Solutions, J. Phys. Chem. B, vol.114, pp.7222-7228, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509754

B. Kosan, C. Michels, and F. Meister, Dissolution and forming of cellulose with ionic liquids, Cellulose, vol.15, pp.59-66, 2008.

L. Hauru, M. Hummel, K. Nieminen, A. Michud, and H. Sixta, Cellulose regeneration and spinnability from ionic liquids, Soft Matter, vol.12, pp.1487-1495, 2016.

C. Huggett, Estimation of rate of heat release by means of oxygen consumption measurements, Fire Mater, vol.4, pp.61-65, 1980.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, Sample Availability: Not available. © 2020 by the authors. Licensee MDPI