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A novel method for the measurement of elastic moduli of fibres

Didier Perrin, Martin Alteirac, Stéphane Corn, Martin E.R. Shanahan *

Centre des Matériaux (CMGD), Ecole des Mines d Alés, 6 Avenue de Claviére, 30319 Alés Cedex, France

Abstract

The elastic modulus of fibres used in composite materials is a parameter of prime importance in the determination of overall mechan-
ical behaviour. However, evaluation of Young’s modulus, E, of a fibre is a delicate operation given the small dimensions (diameter typ-
ically a few tens of microns), and therefore low forces involved in tensile testing. This article treats a novel method of modulus assessment
involving the bending of fibres, clamped at one extremity, by forced vibrations. The fibre behaves as a beam, and when the forced oscil-
lations approach (one of) the resonant frequency(ies) of the fibre, the bending amplitude increases. Classical beam theory allows eval-
uation of Young’s modulus from knowledge of resonant frequency, and fibre dimensions and density. Preliminary application of the
technique using fibres of E-glass, having well known elastic characteristics, has given good results and shown its inherent potential. Sub-
sequently, the technique developed was used on recycled fibres in order to obtain their Young’s modulus and to assess their loss of

mechanical properties when compared to virgin fibres.

Keywords: A. Fibres; A. Recycling; B. Fracture; B. Mechanical properties

1. Introduction

Many structural composite materials benefit from weight
saving due to the use of a low-density, resilient polymeric
matrix, combined with relatively high elastic modulus,
endowed by the inclusion of fibre fillers, generally present-
ing quite a high intrinsic Young’s modulus, E. The mecha-
nisms by which added stiffness is achieved are now legend,
be this for long, or short, fibre composites [1-3]. A major
(although not the unique) parameter conferring stiffness is
the elastic modulus of the fibrous component. However,
many frequently-used fibres are of small diameter, of the
order of tens of microns, thus precluding simple stress-
strain measurements because of the necessary delicate
manipulation and small tensile forces required to test such
small cross-sectional bodies without premature fracture.
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To present, one of the most successful techniques indeed
involves direct tensile tests, using precision-built equipment
[4-7]. However, due to the difficulty of successfully attach-
ing both fibre ends, as is necessary in tension, and allowing
for the consequent, inevitable perturbing effects on mea-
surement, a variety of gauge lengths is often used in order
to improve precision, by extrapolating to infinite length.
Thus, when endeavouring to obtain the elastic modulus
of fibres, it is often the measurement of true strain, rather
than applied load, which poses greater problems. Clearly,
non-contact strain measurement techniques are superior
in this respect. Such methods exist, but are in general expen-
sive. Non-contact strain measurement methods include, for
instance, Raman spectroscopy and laser extensometry.
Micro-Raman spectroscopy, with its high spatial resolu-
tion (0.1-1 pm), is possibly one of the most suitable
methods for measuring strain in individual fibres and
determining the transverse modulus, since the average
diameter of the fibres is generally greater than the spatial
resolution of the micro-Raman spectroscopy [8]. Addition-
ally, Raman Spectroscopy has excellent wave number pre-
cision and it is also possible to conduct non-destructive,
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non-contact and short-time measurement near the surface
in a micro-area of Raman-active material. An example is
given in [9]. A thin film of PbO was deposited, by resistance
heating PVD, on the outer surface of the fibre specimen
and a laser beam focused to give a spot size of approxi-
mately 1 ym diameter on the fibre to measure transverse
strain in order to determine its modulus.

A different approach, referred to as the Raman coating
method, relies on the measurement of strain in Raman-
active thin films applied to fibres, thus enabling the strain
of Raman-inactive composites to be observed by Raman
spectroscopy [10].

As for laser extensometry, one technique developed
involves the mounting of an extensometer equipped with
an infrared lamp on a standard servo-hydraulic fatigue
testing machine [11]. The principle of the technique consists
of applying a sinusoidal time-dependent stress, ¢ = ogo-
sinwt, to the specimen, leading to a resulting strain,
& = gsin(wt — @), where &, and ¢, respectively, amplitude
and phase lag, are measured. The amplitude and phase
data were obtained and treated using a frequency response
analyser.

The technique presented here, which is new to the
authors’ knowledge, largely eliminates the inherent prob-
lems related to tensile testing on this minute scale. Instead
of straining an individual fibre in tension, the fibre is bent,
thus only one extremity is in need of attachment. In addi-
tion, the solitary physical connection to the external appa-
ratus only experiences lateral forces, to all intents and
purposes, and so the fibre/ support interface is under a
low level of stress.

2. Theory

The basis of the method developed here is to consider a
fibre clamped at one extremity as behaving as a cantilever
beam, encastré at one end, of length, /, and sectional
moment of inertia, /. Since we shall be treating fibres of
essentially circular section of radius, r, we have, with
respect to the longitudinal plane of symmetry, I = nr*/4

(see Fig. 1, but note that the aspect ratio, //r, is typically
much greater than that portrayed in the figure, for clarity).
The basic theory of oscillations of such a beam is classical
and may be found in standard treatises on vibrational
mechanics, e.g. [12-15]. Suffice it in this context to give a
succinct outline derivation.

In Fig. 1, x represents distance along the (undeformed)
fibre from the origin, O, at the point of fixation, and y
is the fibre displacement normal to x. The problem is
assumed to be 2-dimensional. Since the system is oscilla-
tory, and for our purposes in a steady state regime, we
assume that separation of variables is permitted:

y(x,t) = z(x) - sin(27vt + (), (1)

o .

it 2nv - z(x) - cos(2mvt + {), (2)
.. etc.

?

where v is frequency, ¢ is time and { is simply an arbitrary
phase angle.

The Lagrangian function for the oscillating beam, L, is
composed of the difference between kinetic, T, and poten-
tial, ¥, (i.e. elastic, stored) energies, and can be written as:

L(V:J"r:y”:j":j"f) = T(V:J"f:}":j"f) - V(V:J"f:y”)
! 1 . 1 mn
—£ (EmJ’Z—EEIJ’ )dx: 3)

where m is the linear density of the fibre (mass/unit length)
and E its Young’s modulus. The dot and prime have their
usual meanings of differentiation with respect to ¢ and x.

Following classical Lagrangian mechanics principles
and applying the Euler variational equation to expression
(3), after considerable algebra, it can be found that y(x,?)
must obey:

e m .
y gy =0. 4)

Inspired by Eqgs. (1) and (2) et seq., separation of variables
leads to:

Support
“Blob” of .
i adhesive L
Vibratio '

Fig. 1. Schematic representation of fibre embedded in “blob” of adhesive attached to support, and nomenclature employed (NB: aspect ratio, I//r, is in

reality typically much greater than shown: see Fig. 2).



T y'z=0, (5)
where

y = (4n’mv?/EI)'*. (6)
Eq. (5) is solved using the boundary conditions of
20)=£0) =0 )
and

d’z d’z

) =g=()=0. ®)

Again, after a significant amount of algebra, we obtain the
identity:

cos(yl) - cosh(yl) +1 =0, (9)

which has the (iterative, or graphical) solutions of
yI=1.875 for the first harmonic solution (n=1), and
yI =4.694 for the second mode (n=2). Thus, from Eq.
(6), considering specifically the former solution, for n =1,
the characteristic (primary) frequency of vibration is given
by:
1.875% (EI\ '

- - 10
T (m) (19)
and this value of v; corresponds to resonance. Alterna-

tively, assuming a fibre of circular section (/= nrt/4), and
rearranging, we obtain:

14
E:lZ.S?p-vf, (11)
for the fundamental mode. Equivalently:
E:{].SZS%-@, (12)

for the second mode, with resonant frequency, v,. In Egs.
(11) and (12), p is the density of the material constituting
the fibre, as opposed to the linear density (p = m/nr?).

Eq. (11) thus gives Young’s modulus of the vibrating
fibre from a knowledge of its fundamental resonant fre-
quency, dimensions and density, and Eq. (12) from its sec-
ond harmonic. This means that if the fibre, retained in the
beam configuration described, is made to vibrate by exter-
nal means applied to its support, perpendicularly to the
fibre length, and this external frequency is varied by scan-
ning, a marked increase in displacement amplitude should
be expected for frequencies, v, satisfying Eqs. (11) and (12)
(and in principle for higher modes, n = 3, where the pre-
factor will be smaller, but these will be harder to attain
experimentally). The above treatment assumes no energy
dissipation effects on fibre motion; a point which will be
discussed later.

3. Materials and techniques

3.1. Materials

The model fibres used in the development of the present
work were made of the well-known E-glass [16], manufac-
tured by Vetrotex St Gobain International. Commercial
short glass fibres have an average length of 4.5 mm. This
material has a well-established Young’s modulus of 73 +
2 GPa, in its normal state, and a density, p, of 2600 +
100 kg m—. Fibre diameters are typically approximately
16 um [17]. The virgin fibres used here, having been cut
specifically, had lengths, /, in the range of approximately
1.8-13mm. The dimensions of individual fibres were
obtained using both optical and, more successfully, scan-
ning electron microscopy (Quanta 200 FEG, FEI Com-
pany). Homogeneity of fibre cross-sections was also
verified, by measurement at different places. With rare
exceptions, the standard deviation of fibre radii was found
to be approximately 0.5 pm or less.

After having first developed the present technique on
virgin fibres, used fibres, obtained from sheet-moulding
compound (SMC), were also studied. Panels of SMC com-
posite of dimensions 500 x 500 x 2 mm® were cut up and
then shredded with a Rotoplex-Alpine Rotary Cutter Mill
turning at 1500 rpm for 25 min, to obtain model SMC pro-
duction waste. This material contains E-glass fibres repre-
senting a quarter of the composition of the SMC. The
passing grounds were recuperated after sieving with a
315 ym wire gauze. Three successive treatments of fibres
were undertaken and the resulting Young’s modulus fol-
lowing each stage assessed by the vibration technique
described above.

e shredding and sieving only (1st treatment) [18],

¢ shredding and dissolving the passing ground in a buffer
acid solution of H3PO, at pH 2.0 (2nd treatment) [18],

e shredding, dissolution and finally thermal treatment of
the SMC grounds at 200 °C for 3 h (3rd treatment).

After all three stages of treatment, clean, straight fibres
were chosen for testing.

In initial tests, the fibres to be characterised were indi-
vidually attached to flat polymeric (cellulose acetate) sup-
ports, perpendicularly to their axes, by means of a small
“blob” of Araldite® adhesive. For later tests, the polymeric
supports were replaced by steel, but similar geometry was
retained (Section 4). The adhesive was positioned in and
around a small hole previously drilled in the support (=3
mm in diameter and 2 mm in depth) to enhance the rigidity
of the mounting. Fig. 2 gives a typical microscopic view of
a fibre thus prepared, embedded in its adhesive “‘blob”.
Fibre length, /, was measured from the top of the adhesive
“blob” to the free fibre end: the (relatively) massive dimen-
sions of the “blob” compared to the fibre, and the fact that
the adhesive surface was virtually perpendicular to the fibre
axis imply that any contribution to vibration of the fibre
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Fig. 2. E-glass fibre of length approximately 13 mm embedded in adhesive “blob™ on cellulose acetate support.

beneath the adhesive surface will be totally negligible. (It
was fortunate that the adhesive did not wet the fibre too
much (high contact angle), and thus “climb” up the fibre
shaft: this would have rendered the initial part of the fibre,
near the adhesive, a “composite material”’, invalidating the
hypothesis of constant cross-section and modulus.) It is
perhaps worth noting that the simplification adopted
would probably not be valid were the fibre to be tested in
tension, parallel to its axis, as opposed to perpendicularly,
as is the case here.

3.2. Experimental techniques

Individual fibres, of various lengths, each mounted on
its support, were attached to the vibrating platform of an
electrodynamic shaker (Ling Dynamic System), in series
with a sinusoidal wave power supply and amplifier (Hameg
Instrument), capable of imposing oscillations in the range
0.3-9000 Hz. Fibre assemblies were attached using a thin
layer of organic wax on the area of the vibration platform.

Attachment was assured so that the vertical oscillations
of the electrodynamic shaker platform, and therefore fibre
support, were perpendicular to the horizontal fibre axis
leading to flexural beam-type movement of the fibre, due
to inertial effects (see Fig. 1). Starting generally from low
frequencies, the range was scanned slowly, with measure-
ments being taken near fibre resonance windows. Experi-
ments were undertaken in still air at approximately 25 °C
and ambient humidity (=50% RH).

Different configurations were tried in order to observe
the vibrating fibre and its support, based mainly on having
a source of illumination behind the fibre, a bi-convex lens
in front, followed by a screen, typically with distances of
approximately 0.5 m between fibre and lens and 2.5m

between lens and screen. With the set-up employed, magni-
fication was of the order 100x. To facilitate observation,
experiments took place in a darkroom. The overall experi-
mental set-up for fibre vibration and monitoring is shown
schematically in Fig. 3.

4. Results

Preliminary tests on virgin fibres effected with polymeric
supports led to satisfactory estimates of Young’s modulus,
in good agreement with the accepted value and in line with
those discussed below obtained using steel supports, yet
rather more scatter was observed. This was at least in part
due to the wider resonance peaks (Section 5). For this rea-
son, we opted for the steel supports for the major part of
this study, and the quantitative treatment and discussion
below concern these. Table 1 summarises data obtained
(with steel supports), and necessary to compare predicted
and experimentally obtained values of E, the latter being
calculated from Egs. (11) and (12) and respective values
of resonant frequency, v. Preliminary calculations, based
on the accepted values for E and p for E-glass given above,
showed that the fundamental mode (in brackets: mode 2)
resonance should occur at a frequency of approximately
3kHz (26kHz) for fibres of length of approximately
1.8 mm, decreasing to approximately 70 Hz (460 Hz) for
[~ 13 mm. It can be seen that the tabulated values corre-
sponding to these two extremes of the range of fibre lengths
studied are in good agreement with these estimates.

In Fig. 4, we show a graphical interpretation of the
results given in Table 1. Young’s modulus, E, is given as
the ordinate, with fibre length, /, as the abscissa. Values
of E have been estimated from both vibration modes, using
Egs. (11) and (12). Also in this figure, we have added the



Collimated light source ———,

\ Steel or
Y cellulose

] acetate  Araidite blob

support

Divergent lens

Organic —

Electrodynamic_____,
shaker

Concrete hlock—\

I Amplifier
Sinusoidal wave
OOmmmm |- Sowr

o

- -
25m

+H

X

.
>

Fig. 3. Schematic representation of overall experimental set-up for fibre vibration and monitoring.

Table 1

Lengths, I, of virgin E-glass fibres tested, and their corresponding measured resonant frequencies for both fundamental and secondary modes, v, and v,,

and estimated errors

I (mm) Fundamental mode Second mode
v, (Hz) E, (GPa) E2E 5 100 (%) v, (Hz) E, (GPa) E2E % 100 (%)
1.77 £ 0.01 3760+ 5 72.9 —0.14 - - -
2.394+0.02 2090+ 5 74.7 2.33 - - -
491+0.01 490+5 73.4 0.55 2855+ 5 63.2 —13.42
6.71 +0.01 260+ 5 73.9 1.23 1690 + 5 77.7 6.44
7.71 +£0.01 195+5 70.0 —4.11 1290 + 5 78.6 7.67
8.45+0.01 165+ 5 72.1 -1.23 1065 + 5 71.3 5.89
9.71+0.01 125+5 70.5 342 700 + 5 57.9 —20.68
10.16 + 0.01 110+5 76.7 5.07 680 +5 72.0 —-1.37
10.39 + 0.01 95+5 72.8 —0.27 610 +5 72.4 —0.82
10.85 + 0.01 101+5 75.1 2.88 695 +5 89.0 21.92
11.01 + 0.01 97+5 72.8 —0.27 605 +5 72.4 —0.82
11.45+0.01 9245 76.2 4.38 565+5 74.1 1.51
11.66 + 0.01 85+5 70.5 —3.42 580 +5 83.9 14.93
11.78 + 0.01 84+5 7.7 —-1.78 550 +5 71.9 6.71
11.79 + 0.01 84+5 7.7 —-1.78 550 +5 78.1 6.99
12.03 + 0.01 80+5 71.0 —2.74 455 +5 57.9 —20.68
12.10 + 0.01 79+5 70.9 —2.88 520+5 77.8 6.57
12.79 + 0.01 T1+5 71.0 —2.74 460 +5 76.0 4.11
Average values - 72.7+2.0 —0.46 £2.74 - 741+ 8.4 1.56 + 11.53

Values of Young’s modulus, E, and E,, for the two resonances, as calculated, respectively, from Eqs. (11) and (12) are given along with relative percentage

errors compared to the accepted value.

Fibre radius: r = 7.95 &+ 0.01 pm.

Fibre density: p = 2600 & 100 kg m—.
Accepted Young’s modulus: £= 73+ 2 GPa.

“theoretical” value of Young’s modulus of E-glass fibres,
viz. 73 GPa, for comparison.

The agreement is quite acceptable, although there is
certainly experimental scatter, but this can hopefully be
reduced with refinement of the technique.

Whether fundamental or secondary mode vibrations are
exploited, the average values of Young’s modulus estab-
lished are in good agreement with the accepted value, with

the average experimental values of E being 72.7 + 2 GPa
for mode 1 and 74.1 £+ 8.4 GPa for mode 2. However, it
can be seen both from the standard deviations in Table 1
and from the scatter in Fig. 4, that the fundamental mode
gives more precise results, possibly due to the relatively
greater ease in identification of resonance. At its present
stage of development, based on a visual technique for
determination of the vibration mode, it is clear that
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Fig. 4. Results of Young’s modulus, E, vs fibre length from (a) fundamental, and (b) second vibration mode. The horizontal solid and dotted lines
(virtually coincident in (a)) represent, respectively, the calculated average and accepted values of E.

characterisation of the second mode becomes more difficult
at higher frequencies. Nevertheless, the present results
show the promise of this novel technique. Furthermore,
use of the technique would appear potentially useful for
characterising other kinds of fibrous materials possessing
a high elastic modulus (steel, aramid, carbon, etc.).
Having established the good correlation between the
accepted value of E and those obtained by the present
method, when using virgin E-glass fibres, a study of aged
sheet moulding compound fibres was undertaken. These
fibres underwent various degrees of degradation or trans-
formation during a recycling process, allowing them to be
competitive with virgin materials. Data concerning the

three recycling stages are summarised in Table 2. Only
the fundamental vibration mode, v, was studied. The val-
ues for each stage of treatment correspond to the average
and spread obtained from four samples.

Based on the results shown in Table 2, a strong decrease
of Young’s modulus is noted between the virgin and the
reused fibres, this being particularly marked after the first
step of shredding. The slight grinding involved provokes
a loss of modulus of approximately 18%, presumably
because of the creation of local stresses within the fibres.

Since an acidic environment is present for the second
step of the recycling process, a further, yet less significant,
drop of approximately 7% is noted in comparison with the



Table 2

Lengths, /, and fundamental resonant frequencies, v;, with estimated errors, of used E-glass fibres, tested as a function of degree of treatment, E as
evaluated from Eq. (11), and relative percentage errors compared to the accepted value for virgin fibres

Stage of treatment Fibre length / (mm) v; (Hz) E of treated SMC fibres ( Eyearea) (GPa) Eﬂgi x 100 (%)
Shredding 12.32 +£0.01 T1+1 61.1+22 —18
Dissolving 11.59 +£0.01 T6+2 549+24 -25
Thermal treatment 7.81 £0.01 168 +£2 553+16 —24

Fibre radius: r = 7.95 £+ 0.01 pm.
Fibre density: p = 2600 + 100 kg m—>.
Accepted Young’s modulus: £=73 + 2 GPa.

first stage of shredding alone. The expected strong influ-
ence of the acid is probably partially counteracted by the
chemical properties of E-glass fibres which resist an aggres-
sive environment such as an acidic solution.

Thermal treatment of SMC fibres would seem to have
little or no influence regarding the Young’s modulus of
the fibres. Within experimental error, the same value of
Young’s modulus is observed before and after the second
and the third stages of the process. This is probably due
to too low an isothermal temperature (200 °C) having neg-
ligible mechanical impact.

5. Discussion

The above description of the results shows the method
developed here to be highly satisfactory for estimating fibre
modulus. Some refinement may be necessary in order to
reduce experimental scatter, but the potential of the tech-
nique is clear. However, at least part of the scatter may
be intrinsic. This could be the case if the resonance peaks
are too diffuse. A study of the shape of the resonance peaks
is therefore of interest. Fig. 5 gives a schematic, yet typi-
cally semi-quantitative, representation of vibration ampli-
tude vs frequency, arbitrarily centred on resonance, for
simplicity. Three peaks are shown: that “expected”, and
those found both with a steel fibre support and with a poly-
meric fibre support, as used for the preliminary tests. The
sharpness (or Q factor) is less than anticipated in both
experimental cases. Such a phenomenon of peak widening

(0]

Amplitude (mum)

-60 40 -20 0 20 40 60
Frequency taling resonance as arbitrary zero (Hz)

Fig. 5. Schematic representation of: (a) expected resonance peak shape,
and those found with (b) fibre mounted on a polymeric support, (c) with
fibre mounted on a steel support.

is typical of some mechanism of energy dissipation occur-
ring during oscillations which, without forced motion,
would lead to (rapid) damping of the vibrations. In simple
terms, the more significant the damping force, the wider is
the peak. Fig. 5 therefore suggests that the cellulose acetate
support is more dissipative than the steel support. As a
consequence, identification of the resonant frequency
becomes more difficult. This may be expected since the
polymer will have an at least partially viscoelastic compo-
nent to its mechanical behaviour, whereas the steel may
be considered to be purely elastic under the conditions con-
sidered. In principle, the presence of a damping, or viscous,
component shifts the resonant frequency to a lower value
[19], but this is insignificant in the case studied, as will be
seen from a simple calculation below. Notwithstanding,
the resonance peak width, even for the steel support, is per-
haps larger than may be expected intuitively. It is probable
that the fibre itself may be treated as purely elastic, and is
therefore not at the root of the problem. The adhesive
“blob” is far more rigid than the fibre, especially in the
direction of oscillation, perpendicular to the fibre axis,
and thus may be discounted. Two possible causes are con-
sidered. Glass fibres are generally covered with sizing, a
polymeric material applied to protect the glass surface
(amongst other purposes). Considering a thin and homoge-
neous sizing layer of thickness, &r, on the fibre of radius, r,
it can be shown that the effective fibre modulus becomes
(E + 4E:8r/r), where E; is the (complex) Young’s modulus
of the sizing material. Taking E} to be 1 GPa (of which
only a fraction will correspond to the loss modulus, E!)
and or as 0.1 pm, we find 4E}dr/(Er) at approximately
1073, Thus, the viscous, or lossy, character endowed on
the fibre, by the sizing, will be negligible.

Another possible explanation of the relatively wide res-
onance peak could be the air resistance acting on the oscil-
lating fibre. The order of magnitude of the maximum fibre
speed, Vmax, (at the fibre’s free extremity, and when y =0)
may be found from Eq. (2), taking z(x) = z(/) (=2 mm, by
observation), a fairly typical frequency of 100 Hz, and set-
ting the cosine term to unity, thus leading to a value of the
order of 1 m s™'. ¥, is thus well below the speed of sound
in air and the latter may therefore be reasonably approxi-
mated to an incompressible fluid. The local (maximum
value of) Reynolds number, Re, is given by 2Vyaxrpair/f,
(where 7 is the dynamic viscosity of air: ~1.8x 107> Pa s;
and p,; its density: =1.2 kg m_3), and is thus of order 1.



In this range of Re (the following is apparently valid for
Re £ 100, although perusal of a graph of log Cp vs log Re
suggests 10 may be a more reasonable cut-off value [19]),
for a circular cylinder the drag coefficient, Cp, is given
approximately by Cp = 24 Re™' [20]. From the definition
of Cp(= fair/(PairV 2exr) fOr our example), it may be readily
shown that the typical maximum force per unit length of
cylinder due to air resistance, f;,, during oscillation will
be of order 125 V.. More generally, for any given local
(in distance, x, and time, ¢) fibre speed, the damping pre-
factor is approximately 125. In order to allow for air damp-
ing, we may modify Eq. (4) to give:

y+—y=0. (13)

i
S Ty

A full analysis of Eq. (13) is, however, complex, and so
instead, we present an order of magnitude approach. Sim-
ple static analysis of the beam (fibre) assuming constant
loading per unit length leads to the expression:

x*
z(x) :z(I)F. (14)
The total force of air resistance over the fibre length, F;, is
then of order:

m 125 .

g 12 .
Faom 121 [ Z25.0dx =Sty (15)

for any given value of j(/,¢) in its sinusoidal cycle.
Assimilating, for simplicity, fibre oscillation with classic
simple harmonic motion (SHM), it follows that the half-
width on the frequency scale of the resonance peak at half
maximum (squared) amplitude [12,13] is given by
(Fair/¥)/(2M), or approximately nl/M, where the mass,
M, of a typical fibre of length of about 1cm is M=~
nr’lp ~ 5 x 10~° kg. The half-width of the resonance peak
is thus calculated at about 40 Hz. Although seemingly
rather high, this order of magnitude corresponds reason-
ably to that observed experimentally. Air resistance is thus
a very plausible cause of the relatively wide resonance
peaks observed, although not proved unequivocally. (An
additional complication, in a more exact appraisal of this
aspect, could be that local ““disturbance” of the air in the
zone repeatedly swept out by the fibre in motion may not
be negligible, and could modify the damping pre-factor.)
A corollary of this simple SHM treatment is that the
peak frequency for resonance should be slightly reduced
due to damping. In the present context, where the natural
frequency is v, the reduced frequency, v..q, is given by,

1/2

et = [Vz_ ‘3"’2’2] . (16)

25m2M?

With the above values, we find that v,y = 0.995v, so the ef-
fect of (air) damping on observed resonant frequency is
small and any correction quite negligible. This corrobo-
rates the good agreement found between accepted and de-
duced values of E, as mentioned above.

Further work with fibres mounted in a reduced pressure
environment could clarify certain aspects of these damping
phenomena, although this procedure would reduce the sim-
plicity of the method suggested here. Despite a lack of full
understanding of the resonance peak width at present, it
can nevertheless be seen that if the central values of fre-
quency of the peaks are adopted, this novel experimental
technique can be used to obtain very good estimates of
Young’s modulus for small diameter fibres, a parameter
which is exceedingly difficult to obtain by other means.
The technique could also prove to be very useful for study-
ing fibres of limited length, such as natural fibres (e.g.
pulp).

The above theory will apply to isotropic “beams” of cir-
cular section, such as glass, as studied, or metallic fibres.
One drawback of the technique is the necessity to have
fibres of regular cross-section, both from a geometrical
and from a mechanical properties point of view. Otherwise,
the basic theory above cannot be reliably applied (or, at
least, its precision is reduced). A variable cross-sectional
area and/or modulus would perturb the assumed constancy
of the product, EI, in Eq. (4) et seq. in the following deve-
lopment. For example, some polymeric, and graphite fibres
would suffer from this disadvantage. Notwithstanding, this
same shortcoming can be levelled at direct tensile evalua-
tion methods, where any changes in sectional characteris-
tics will also perturb evaluation of fibre properties
(evaluated moduli are effectively averaged). Any differences
between compressive and tensile modulus should normally
be negligible for the small strains involved.

Note, however, that a different, but constant, cross-sec-
tion, coupled with a sufficiently isotropic fibrous material
(in tension and compression), would only entail re-determi-
nation of the position of the neutral surface and recalcula-
tion of 7, which is not a significant problem.

6. Conclusion

We have developed a novel and simple method for the
evaluation of Young’s modulus, E, of fine fibres, as often
used to reinforce composite materials. Rather than submit
fibres to tensile loads along their axis, they are retained
only at one end and effectively “waggled” like a dog’s tail!
The fibre is mounted on an electrodynamic shaker, via a
system of support, and by scanning frequency, zones of res-
onance can be found. Using simple beam theory, it is thus
possible to calculate E. Using virgin E-glass fibres, of
known characteristics, as a model, accepted and experi-
mental values of Young’s modulus were compared and
the agreement was found to be very good. A significant
reduction of Young’s modulus was found with preliminary
trials on initially similar fibres subsequently having under-
gone recycling treatments, such as shredding, dissolution or
of a thermal nature. A phenomenon not yet totally under-
stood, is the relatively large width of vibration resonance
peaks, usually associated with energy loss. It is suggested
that this is mainly attributable to dissipation caused by



air resistance during fibre motion. The technique is hoped
to be of use in the general assessment of fibres, and also
for following their ageing behaviour.
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