E. Gartner, Industrially interesting approaches to "low-CO 2 " cements, Cem. Concr. Res, vol.34, pp.1489-1498, 2004.

J. S. Damtoft, J. Lukasik, D. Herfort, D. Sorrentino, and E. M. Gartner, Sustainable development and climate change initiatives, Cem. Concr. Res, vol.38, pp.115-127, 2008.

M. Schneider, M. Romer, M. Tschudin, and H. Bolio, Sustainable cement production -present and future, Cem. Concr. Res, vol.41, pp.642-650, 2011.

C. Shi, A. Jiménez, and A. Palomo, New cements for the 21st century: the pursuit of an alternative to Portland cement, Cem. Concr. Res, vol.41, pp.750-763, 2011.

M. Juenger, F. Winnefeld, J. L. Provis, and J. H. Ideker, Advances in alternative cementitious binders, Cem. Concr. Res, vol.41, pp.1232-1243, 2011.

B. Lothenbach, K. Scrivener, and R. D. Hooton, Supplementary cementitious materials, Cem. Concr. Res, vol.41, pp.1244-1256, 2011.

F. Pacheco-torgal, J. Castro-gomes, and S. Jalali, Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products, Constr. Build. Mater, vol.22, pp.1305-1314, 2008.

F. Pacheco-torgal, J. Castro-gomes, and S. Jalali, Alkali-activated binders: A review. Part 2. About materials and binders manufacture, Constr. Build. Mater, vol.22, pp.1315-1322, 2008.

J. Davidovits and . Geopolymers, J. Thermal Anal, vol.37, pp.1633-1656, 1991.

P. V. Krivenko, Alkaline cements, 9th International Congress on the Chemistry of Cements, vol.IV

S. Wang, X. Pu, K. L. Scrivener, and P. L. Pratt, Alkali-activated slag cement and concrete: a review of properties and problems, Adv. Cem. Res, vol.7, pp.93-102, 1995.

P. Duxson, J. L. Provis, G. C. Lukey, and J. S. Van-deventer, The role of inorganic polymer technology in the development of 'green concrete, Cem. Concr. Res, vol.37, pp.1590-1597, 2007.

P. Duxson, A. Fernández-jiménez, J. L. Provis, G. C. Lukey, A. Palomo et al., Geopolymer technology: the current state of the art, J. Mater. Sci, vol.42, pp.2917-2933, 2007.

J. Van-deventer, J. L. Provis, P. Duxson, and D. G. Brice, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials, Waste Biomass Valoriz, vol.1, pp.145-155, 2010.

J. L. Provis, Geopolymers and other alkali activated materials: why, how, and what?, Mater. Struct, vol.47, pp.11-25, 2014.

B. Talling and J. Brandstetr, Present state and future of alkali-activated slag concretes, 3rd CANMET/ ACI Conference on Fly Ash, pp.1519-1545, 1989.

B. Talling and P. Krivenko, Blast furnace slag -the ultimate binder, Chandra S. Waste materials used in concrete manufacturing, pp.235-289, 1997.

C. Shi, P. V. Krivenko, and D. Roy, Alkali-activated cements and concretes, 2006.

S. A. Bernal, J. L. Provis, A. Fernández-jiménez, P. V. Krivenko, E. Kavalerova et al., Binder chemistry -highcalcium alkali-activated materials, Alkali-activated materials: state-of-the-art report, RILEM TC 224-AAM, pp.59-91, 2014.

A. Fernández-jiménez and F. Puertas, Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements, Adv. Cem. Res, vol.15, pp.129-136, 2003.

A. Fernández-jiménez, J. G. Palomo, and F. Puertas, Alkali-activated slag mortars: Mechanical strength behaviour, Cem. Concr. Res, vol.29, pp.1313-1321, 1999.

A. R. Brough and A. Atkinson, Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure, Cem. Concr. Res, vol.32, pp.865-879, 2002.

J. I. Escalante-garcía, A. F. Fuentes, A. Gorokhovsky, P. E. Fraire-luna, and G. Mendoza-suarez, Hydration products and reactivity of blast-furnace slag activated by various alkalis, J. Am Ceram. Soc, vol.86, pp.2148-2153, 2003.

O. Burciaga-díaz and J. I. Escalante-garcía, Structure, mechanisms of reaction, and strength of an alkali-activated blast-furnace slag, J. Am. Ceram. Soc, vol.96, pp.3939-9948, 2013.

B. Haha, M. , L. Saout, G. Winnefeld, F. Lothenbach et al., Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags, Cem. Concr. Res, vol.41, pp.301-310, 2011.

B. Haha, M. Lothenbach, B. , L. Saout, G. Winnefeld et al., Influence of slag chemistry on the hydration of alkali-activated blastfurnace slag -Part I: Effect of MgO, Cem. Concr. Res, vol.41, pp.955-963, 2011.

B. Haha, M. Lothenbach, B. , L. Saout, G. Winnefeld et al., Influence of slag chemistry on the hydration of alkali-activated blastfurnace slag -Part II: Effect of Al 2 O 3, Cem. Concr. Res, vol.42, pp.74-83, 2012.

A. Gruskovnjak, B. Lothenbach, L. Holzer, R. Figi, and F. Winnefeld, Hydration of alkali-activated slag: comparison with ordinary Portland cement, Adv. Cem. Res, vol.18, pp.119-128, 2006.

L. Saoût, G. , B. Haha, M. Winnefeld, F. Lothenbach et al., Hydration degree of alkali-activated slags: A 29Si NMR study, J. Am. Ceram. Soc, vol.94, pp.4541-4547, 2011.

S. A. Bernal, S. Nicolas, R. Myers, R. J. , M. De-gutiérrez et al., MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders, Cem. Concr. Res, vol.57, pp.33-43, 2014.

B. Lothenbach and A. Gruskovnjak, Hydration of alkali-activated slag: thermodynamic modelling, Adv. Cem. Res, vol.19, pp.81-92, 2007.

F. Puertas, S. Mart??ez-ram??ez, A. S. Vázquez, and T. , Alkali-activated fly ash/ slag cements: Strength behaviour and hydration products, Cem. Concr. Res, vol.30, pp.1625-1632, 2000.

F. Puertas and A. Fernández-jiménez, Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes, Cem. Concr. Compos, vol.25, pp.287-292, 2003.

D. Stephan, R. Tänzer, and M. Schmidt, Alkali activation -an alternative to cements that contain clinker, Cem. Int, vol.8, issue.1, pp.72-85, 2010.

D. Stephan, R. Tänzer, and M. Schmidt, Alkali activation -an alternative to cements that contain clinker; part 2, Cem. Int, vol.8, issue.2, pp.74-81, 2010.

C. Shi and Y. Li, Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement, Cem. Concr. Res, vol.19, pp.527-533, 1989.

S. Wang, K. L. Scrivener, and P. L. Pratt, Hydration products of alkali activated slag cement, Cem. Concr. Res, vol.24, pp.1033-1043, 1994.

S. Wang and K. L. Scrivener, Hydration products of alkali activated slag cement, Cem. Concr. Res, vol.25, pp.561-571, 1995.

R. Dron, Structure and reactivity of glassy slags, 8th International Congress on the Chemistry of Cement, vol.3, pp.81-85, 1986.

A. Ehrenberg, D. Israel, A. Kühn, H. Ludwig, V. Tigges et al., Granulated blastfurnace slag: reaction potential and production of optimized cements, part 1, Cem. Int, vol.6, issue.2, pp.90-96, 2008.

A. Ehrenberg, D. Israel, A. Kühn, H. Ludwig, V. Tigges et al., Granulated blastfurnace slag: reaction potential and production of optimized cements, Cem. Int, vol.6, issue.2, pp.82-92, 2008.

A. Ehrenberg, Hüttensand -Ein leistungsfähiger Baustoff mit Tradition und Zukunft, Teil 1 (Granulated blastfurnace slag -a high-performance construction material with tradition and future, Beton-Informationen, vol.4, issue.1, pp.35-63, 2006.

A. Ehrenberg, Hüttensand -Ein leistungsfähiger Baustoff mit Tradition und Zukunft, Teil 2 (Granulated blastfurnace slag -a high-performance construction material with tradition and future

. Beton-informationen, , vol.5, pp.67-95, 2006.

V. Kocaba, Development and evaluation of methods to follow microstructural development of cementitious systems including slags, 2009.

K. F. Hochofenschlacke, Düsseldorf (Germany): Verlag Stahleisen m.b.H, 1963.

E. Lang, Structure and Performance of Cements, pp.310-325, 2002.

H. Schwiete and F. Dölbor, Einfluß der Abkühlungsbedingungen und der chemischen Zusammensetzung auf die hydraulischen Eigenschaften von Hämatitschlacken (Influence of the cooling conditions and the chemical composition on the hydraulice properties of hematite slags), Forschungsberichte des Landes Nordrhein-Westfalen. No, 1186.

H. G. Smolczyk, Slag structure and identification of slags, 7th International Congress on the Chemistry of Cement

W. Wassing and V. E. Tigges, The significance of the silicate in granulated blastfurnace slags for the early strength of blastfurnace cement mortars and concretes, Cem. Int, vol.6, issue.2, pp.98-109, 2008.

W. Wassing and V. E. Tigges, Improving the eraly strength of blastfurnace cement mortars and concretes by fixation of calcium silicate hydrogels with reactive aluminates, Cem. Int, vol.6, issue.5, pp.62-79, 2008.

W. Wassing, Relationship between the chemical reactivity of granulated blastfurnace slags and the mortar standard compressive strength of the blastfurnace cements produced from them, Cem. Int, vol.1, issue.5, pp.94-109, 2003.

E. Demoulian, P. Gourdin, F. Hawthorn, and C. Vernet, Influence of slag chemical composition and texture on their hydraulicity, 7th International Conference on the Chemistry of Cement

H. G. Smolczyk, The effect of the chemistry of the slag on the strengths of the blastfurnace cements, Zement-Kalk-Gips, vol.31, pp.294-296, 1978.

H. Kollo and J. Geiseler, Beurteilung der Qualität von Hüttensand anhand von Kennwerten (Quality assessment of blastfurnace slag using characteristic values), Beton-Informationen, vol.27, pp.48-51, 1987.

E. Douglas and J. Brandstetr, A preliminary study on the alkali activation of ground granulated blast-furnace slag, Cem. Concr. Res, vol.20, pp.746-756, 1990.

, European Standard EN 197-1. Cement -Part 1: Composition, specifications and conformity criteria for common cements, 2011.

A. R. Sakulich, A. E. Schauer, C. L. Barsoum, and M. W. , Influence of Si:Al ratio on the microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag concrete, Mater. Struct, vol.43, pp.1025-1035, 2010.

R. Tänzer, D. Stephan, and A. Ehrenberg, Vergleich unterschiedlicher Hüttensande hinsichtlich ihrer Anregbarkeit durch Portlandzement und alternative alkalische Anreger (Comparison of different blastfurnace slags regarding their activation using Portland cement and alternative alkaline activators), Internationale Baustofftagung (ibausil). Vol, vol.1, issue.18

B. Haha, M. , D. Weerdt, K. Lothenbach, and B. , Quantification of the degree of reaction of fly ash, Cem. Concr. Res, vol.40, pp.1620-1629, 2010.

K. L. Scrivener, Backscattered electron imaging of cementitious microstructures: understanding and quantification, Cem. Concr. Compos, vol.26, pp.935-945, 2004.

D. A. Kulik, T. Wagner, S. V. Dmytrieva, G. Kosakowski, F. F. Hingerl et al., GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes, Comput. Geosci, vol.17, pp.1-24, 2013.

T. Wagner, D. A. Kulik, F. F. Hingerl, and S. V. Dmytrieva, GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models, Can. Mineral, vol.50, pp.1173-1195, 2012.

B. Lothenbach, T. Matschei, G. Möschner, and F. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cem. Concr. Res, vol.38, pp.1-18, 2008.

T. Matschei, B. Lothenbach, and F. Glasser, Thermodynamic properties of Portland cement hydrates in the system CaO-Al 2 O 3 -SiO 2 -CaSO 4 -CaCO 3 -H 2 O, Cem. Concr. Res, vol.37, pp.1379-1410, 2007.

H. Kühl, Die hydraulische Erregung granulierter Hochofenschlacken (The hydraulic activation of granulated blastfurnace slags), Zement, vol.12, pp.320-322, 1923.