G. A. Blengini, Life Cycle Assessment guidelines for the sustainable production and recycling of aggregates: the Sustainable Aggregates Resource Management project (SARMa), J. Clean. Prod, vol.27, pp.177-181, 2012.

K. L. Scrivener and P. L. Pratt, Characterisation of interfacial microstructure, Interfacial Transition Zone in Concrete, vol.2, pp.3-18, 1996.

J. P. Ollivier, J. C. Maso, and B. Bourdette, Adv. Cem. Based Mater, vol.2, issue.1, pp.30-38, 1995.

D. P. Bentz and E. J. Garboczi, Computer Modelling of Interfacial Transition Zone: Microstructure and Properties, in: Engineering and Transport Properties of the Interfacial Transition Zone in Cementitious Composites, pp.349-385, 1999.

K. L. Scrivener, A. K. Crumbie, and P. Laugesen, The interfacial transition zone (ITZ) between cement paste and aggregate, Interface Sci, vol.12, pp.411-421, 2004.

T. Du, W. H. Wang, H. L. Lin, Z. X. Liu, and J. Liu, Experimental study on interfacial strength of the high performance recycled aggregate concrete, pp.2821-2828, 2010.

J. Xiao, W. Li, Y. Fan, and X. Huang, An overview of study on recycled aggregate concrete in China, Constr. Build. Mater, vol.31, pp.364-383, 1996.

A. Rasheeduzzafar and A. Khan, Recycled concrete a source for new aggregate, Cem. Concr. Aggregates, vol.6, pp.17-27, 1984.

V. W. Tam, X. F. Gao, and C. M. Tam, Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach, Cem. Concr. Res, vol.35, issue.6, pp.1195-1203, 2005.

M. Etxeberria, E. Vazquez, and A. Mari, Microstructure analysis of hardened recycled aggregate concrete, Mag. Concr. Res, vol.58, issue.10, pp.683-690, 2006.

G. C. Lee and H. B. Choi, Study on interfacial transition zone properties of recycled aggregate by micro-hardness test, Constr. Build. Mater, vol.40, pp.455-460, 2013.

F. De-larrard and A. Belloc, The influence of aggregate on the compressive strength of normal-and high-strength concrete, ACI Mater. J, vol.94, p.5, 1997.

T. Nguyen, G. L. Saout, P. Devillers, and E. Garcia-diaz, The effect of limestone aggregate porosity and saturation degree on the interfacial zone, The 2nd International Symposium on Cement-based Materials for Nuclear Wastes, p.13, 2014.

Z. Zhao, S. Remond, D. Damidot, and W. Xu, Influence of fine recycled concrete aggregates on the properties of mortars, Constr. Build. Mater, vol.81, pp.179-186, 2015.

D. Dao, Multi-)Recyclage Du Béton Hydraulique, 2012.

. Recybéton, Projet National Recybéton, 2012.

, EN 196-1, Methods of Testing Cement -Part 1: Determination of Strength, European Committee for Standardization, 2006.

Z. Zhao, S. Remond, D. Damidot, and W. Xu, Influence of hardened cement paste content on the water absorption of fine recycled concrete aggregates, J. Sustain. Cem. Mater, vol.2, issue.3-4, pp.186-203, 2013.

T. Le, S. Rémond, G. L. Saout, and E. Garcia-diaz, Fresh behavior of mortar based on recycled sand -influence of moisture condition, Constr. Build. Mater, vol.106, pp.35-42, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02497746

, NF EN 413-2, Masonry Cement, European Committee for Standardization, 2006.

J. Zhang and G. W. Scherer, Comparison of methods for arresting hydration of cement, Cem. Concr. Res, vol.41, issue.10, pp.1024-1036, 2011.

K. L. Scrivener and E. M. Gartner, Microstructural Gradients in Cement Paste around Aggregate Particles, MRS Proc, vol.114, pp.77-86, 1987.

S. Diamond, Considerations in image analysis as applied to investigations of the ITZ in concrete, Cem. Concr. Compos, vol.23, issue.2-3, pp.171-178, 2001.

L. Basheer, P. A. Basheer, and A. E. Long, Influence of coarse aggregate on the permeation, durability and the microstructure characteristics of ordinary Portland cement concrete, Constr. Build. Mater, vol.19, issue.9, pp.682-690, 2005.

A. Elsharief, M. D. Cohen, and J. Olek, Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone, Cem. Concr. Res, vol.33, issue.11, pp.1837-1849, 2003.

S. Hemavibool, The Microstructure of Synthetic Aggregate Produced from Waste Materials and its Influence on the Properties of Concrete, 2007.

A. R. Brough and A. Atkinson, Automated identification of the aggregate-paste interfacial transition zone in mortars of silica sand with Portland or alkaliactivated slag cement paste, Cem. Concr. Res, vol.30, issue.6, pp.849-854, 2000.

H. S. Wong, M. K. Head, and N. R. Buenfeld, Pore segmentation of cement-based materials from backscattered electron images, Cem. Concr. Res, vol.36, issue.6, pp.1083-1090, 2006.

A. Delesse, Procédé mécanique pour déterminer la composition des roches), Ann. Mines, vol.13, pp.379-388, 1848.

H. Chen, W. Sun, P. Stroeven, and L. J. Sluys, Overestimation of the interface thickness around convex-shaped grain by sectional analysis, Acta Mater, vol.55, issue.11, pp.3943-3949, 2007.

M. K. Head, H. S. Wong, and N. R. Buenfeld, Characterising aggregate surface geometry in thin-sections of mortar and concrete, Cem. Concr. Res, vol.38, issue.10, pp.1227-1231, 2008.

A. D. Tegguer, Determining the water absorption of recycled aggregates utilizing hydrostatic weighing approach, Constr. Build. Mater, vol.27, issue.1, pp.112-116, 2012.

A. Z. Bendimerad, E. Roziere, and A. Loukili, Combined experimental methods to assess absorption rate of natural and recycled aggregates, Mater. Struct, 2014.

B. D. Barnes, S. Diamond, and W. L. Dolch, The contact zone between Portland cement paste and glass 'aggregate' surfaces, Cem. Concr. Res, vol.8, pp.233-244, 1978.

K. L. Scrivener, Backscattered electron imaging of cementitious microstructures: understanding and quantification, Cem. Concr. Compos, vol.26, issue.8, pp.935-945, 2004.

G. Saporta, Probabilités, analyse de données et statistique), TECHNIP, 1990.