M. Chan, E. Campo, D. Estève, and J. Y. Fourniols, Smart homes?current features and future perspectives, Maturitas, vol.64, pp.90-97, 2009.

J. F. Bonnefon and A. Shariff, Rahwan, I. The social dilemma of autonomous vehicles, Science, vol.352, pp.1573-1576, 2016.

B. Matthias, S. Kock, H. Jerregard, M. Kallman, I. Lundberg et al., Safety of collaborative industrial robots: Certification possibilities for a collaborative assembly robot concept, Proceedings of the 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM), pp.1-6, 2011.

M. Veloso, J. Biswas, B. Coltin, S. Rosenthal, T. Kollar et al., Cobots: Collaborative robots servicing multi-floor buildings, Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots And Systems, pp.7-12, 2012.

Y. Jia, B. Zhang, M. Li, B. King, and A. Meghdari, Human-Robot Interaction, J. Robot, vol.3879547, 2018.

A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, Safety in human-robot collaborative manufacturing environments: Metrics and control, IEEE Trans. Autom. Sci. Eng, vol.13, pp.882-893, 2015.

P. A. Lasota, T. Fong, and J. A. Shah, A survey of methods for safe human-robot interaction. Found. Trends R Robot, vol.5, pp.261-349, 2017.

F. Amato, V. Moscato, A. Picariello, and G. Sperliì, Extreme events management using multimedia social networks, Future Gener. Comput. Syst, vol.94, pp.444-452, 2019.

J. Aggarwal and L. Xia, Human activity recognition from 3D data: A review, Pattern Recognit. Lett, vol.48, pp.70-80, 2014.

V. Argyriou, M. Petrou, and S. Barsky, Photometric stereo with an arbitrary number of illuminants, Comput. Vis. Image Underst, vol.114, pp.887-900, 2010.

P. J. Gonçalves, P. M. Torres, F. Santos, R. António, N. Catarino et al., A vision system for robotic ultrasound guided orthopaedic surgery, J. Intell. Robot. Syst, vol.77, pp.327-339, 2015.

Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.21-26, 2017.

O. D. Lara and M. A. Labrador, A survey on human activity recognition using wearable sensors, IEEE Commun. Surv. Tutor, vol.15, pp.1192-1209, 2012.

E. Kim, S. Helal, and D. Cook, Human activity recognition and pattern discovery, IEEE Perv. Comput, vol.9, pp.48-53, 2009.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-ortiz, A public domain dataset for human activity recognition using smartphones, Esann; i6doc.com Publishing: Bruges, 2013.

G. Yuan, Z. Wang, F. Meng, Q. Yan, and S. Xia, An overview of human activity recognition based on smartphone, Sens. Rev, vol.39, pp.288-306, 2019.

M. M. Hassan, M. Z. Uddin, A. Mohamed, and A. Almogren, A robust human activity recognition system using smartphone sensors and deep learning, Future Gener. Comput. Syst, vol.81, pp.307-313, 2018.

A. Ignatov, Real-time human activity recognition from accelerometer data using Convolutional Neural Networks, Appl. Soft Comput, vol.62, pp.915-922, 2018.

K. Chen, L. Yao, D. Zhang, X. Wang, X. Chang et al., A Semisupervised Recurrent Convolutional Attention Model for Human Activity Recognition, IEEE Trans. Neural Netw. Learn. Syst, vol.2019, pp.1-10

J. C. Núñez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Vélez, Convolutional Neural Networks and Long Short-Term Memory for skeleton-based human activity and hand gesture recognition, Pattern Recognit, vol.76, pp.80-94, 2018.

F. Amato, A. Castiglione, V. Moscato, A. Picariello, and G. Sperlì, Multimedia summarization using social media content, Multimed. Tools Appl, vol.77, pp.17803-17827, 2018.

V. Vapnik, Statistical Learning Theory, 1998.

J. Sousa and U. Kaymak, Fuzzy Decision Making in Modeling and Control, 2002.

T. Takagi and M. Sugeno, Fuzzy Identification of Systems and its Applications to Modelling and Control, IEEE Trans. Syst. Man Cybern, vol.15, pp.116-132, 1985.

S. L. Chiu, Fuzzy model identification based on cluster estimation, J. Intell. Fuzzy Syst, vol.2, pp.267-278, 1994.

H. P. Castilho, P. J. Gonçalves, J. R. Pinto, and A. L. Serafim, Intelligent real-time fabric defect detection, Proceedings of the International Conference Image Analysis and Recognition, pp.1297-1307, 2007.

W. S. Mcculloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys, vol.5, pp.115-133, 1943.

G. P. Zhang, Neural networks for classification: a survey, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.), vol.30, pp.451-462, 2000.

D. F. Specht, Probabilistic neural networks, Neural Netw, vol.3, pp.109-118, 1990.

S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput, vol.9, pp.1735-1780, 1997.

Y. Yu, X. Si, C. Hu, and J. Zhang, A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures, Neural Comput, vol.31, pp.1235-1270, 2019.

P. J. Gonçalves, The Classification Platform Applied to Mammographic Images. In Computational Intelligence and Decision Making

A. Madureira, C. Reis, and V. Marques, , pp.239-248, 2013.

P. J. Gonçalves, L. M. Estevinho, A. P. Pereira, J. M. Sousa, and O. Anjos, Computational intelligence applied to discriminate bee pollen quality and botanical origin, Food Chem, vol.267, pp.36-42, 2018.

N. Ketkar, Introduction to keras, Deep Learning with Python, pp.97-111, 2017.

S. Geisser and . Predictive-inference;-routledge, , 2017.

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artif. Intell, vol.97, pp.273-324, 1997.