R. Gellert, Natural fibre and fibre composite materials for insulation in buildings, Mater. Energy Effic. Therm. Comf. Build, pp.229-256, 2010.

F. Asdrubali, B. Ferracuti, L. Lombardi, C. Guattari, L. Evangelisti et al., A review of structural, thermo-physical, acoustical, and environmental properties of wooden materials for building applications, vol.114, pp.307-332, 2017.

L. Aditya, T. M. Mahlia, B. Rismanchi, H. M. Ng, M. H. Hasan et al., A review on insulation materials for energy conservation in buildings, Renew. Sustain. Energy Rev, vol.73, pp.1352-1365, 2017.

A. M. Papadopoulos, State of the art in thermal insulation materials and aims for future developments. Energy Build, vol.37, pp.77-86, 2005.

S. Schiavoni, F. D'alessandro, F. Bianchi, and F. Asdrubali, Insulation materials for the building sector: A review and comparative analysis, Renew. Sustain. Energy Rev, vol.62, pp.988-1011, 2016.

A. Blum, L. Birnbaum, R. Weber, K. Kannan, D. Rich et al., Halogenated Flame Retardants in Consumer Products: Do the Fire Safety Benefits Justify the Health and Environmental Risks?, Rev. Environ. Health, vol.25, pp.261-305, 2010.

S. Kemmlein, D. Herzke, and R. J. Law, Brominated flame retardants in the European chemicals policy of REACH-Regulation and determination in materials, J. Chromatogr. A, vol.1216, pp.320-333, 2009.

, Subcommittee on Flame-Retardant Chemicals Toxicological Risks of Selected Flame-Retardant Chemicals, 2000.

A. Leisewitz, H. Kruse, and E. Schramm, Substituting Environmentally Relevant Flame Retardants: Assessment Fundamentals -Results and Summary Overview, 2000.

J. Alongi, R. A. Carletto, A. Di-blasio, F. Cuttica, F. Carosio et al., Intrinsic intumescentlike flame retardant properties of DNA-treated cotton fabrics, Carbohydr. Polym, vol.96, pp.296-304, 2013.

X. Wang, S. Zhou, W. W. Guo, P. L. Wang, W. Xing et al., Renewable Cardanol-Based Phosphate as a Flame Retardant Toughening Agent for Epoxy Resins, ACS Sustain. Chem. Eng, vol.5, pp.3409-3416, 2017.

F. Laoutid, V. Karaseva, L. Costes, S. Brohez, R. Mincheva et al., Novel Bio-based Flame Retardant Systems Derived from Tannic Acid, J. Renew. Mater, vol.6, pp.559-572, 2018.

N. Illy, M. Fache, R. Ménard, C. Negrell, S. Caillol et al., Phosphorylation of bio-based compounds: The state of the art, Polym. Chem, vol.6, pp.6257-6291, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01186950

F. Carosio, J. Alongi, and G. Malucelli, Layer by Layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends, Carbohydr. Polym, vol.88, pp.1460-1469, 2012.

O. Köklükaya, F. Carosio, J. C. Grunlan, and L. Wågberg, Flame-Retardant Paper from Wood Fibers Functionalized via Layer-by-Layer Assembly, ACS Appl. Mater. Interfaces, vol.7, pp.23750-23759, 2015.

C. E. Hobbs, Recent Advances in Bio-Based Flame Retardant Additives for Synthetic Polymeric Materials. Polymers (Basel), p.224, 2019.

E. Bergmeister and J. Heckmaier, Process for preparation of phosphate esters of polymeric materials containing hydroxyl groups, 1966.

L. Passauer, S. Fischer, H. Bender, S. Tech, and A. Wagenführ, Flame retardants comprising polysaccharide derivatives containing nitrogen and phosphorus and use thereof to improve the flame-retardant properties of wood and wood composite materials, 2013.

U. Heinze, D. Klemm, E. Unger, and F. Pieschel, New starch phosphate carbamides of high swelling ability: Synthesis and characterization, Starch/Staerke, vol.55, pp.55-60, 2003.

T. Heinze, T. Liebert, and A. Koschella, Esterification of Polysaccharides

H. G. Barth and H. Pasch, , pp.3-540, 2006.

M. I. Kahlil, S. Farag, A. A. Aly, and A. Hebeish, Some studies on starch-urea-acid reaction mechanism, Carbohydr. Polym, vol.48, pp.255-261, 2002.

M. I. Khalil, S. Farag, K. M. Mostafa, and A. Hebeish, Some Studies on Starch Carbamate, vol.46, pp.312-316, 1994.

L. Passauer and H. Bender, Functional group analysis of starches reacted with urea-phosphoric acid-Correlation of wet chemical measures with FT Raman spectroscopy, Carbohydr. Polym, vol.168, pp.356-364, 2017.

L. Passauer, H. Bender, and S. Fischer, Synthesis and characterisation of starch phosphates, Carbohydr. Polym, vol.82, pp.809-814, 2010.

M. Z. Sitohy, S. M. Labib, S. S. El-saadany, and M. F. Ramadan, Optimizing the Conditions for Starch Dry Phosphorylation with Sodium Mono-and Dihydrogen Orthophosphate under Heat and Vacuum, vol.52, pp.95-100, 2000.

I. Nehls and F. Loth, 13C-NMR-spektroskopische Untersuchungen zur Phosphatierung von Celluloseprodukten im System H3PO4/Harnstoff. Acta Polym, vol.42, pp.233-235, 1991.

P. Tomasik and C. H. Schilling, Chemical Modification of Starch, Advances in Carbohydrate Chemestry and Biochemestry

D. Horton and . Ed, , 2004.

L. Passauer, Thermal characterization of ammonium starch phosphate carbamates for potential applications as bio-based flame-retardants, Carbohydr. Polym, vol.211, pp.69-74, 2019.

, Reaction to fire tests -Ignitability of products subjected to direct impingement of flame, 2010.

, Fire classification of construction products and building elements -Part 1: Classification using data from reaction to fire tests, Br. Stand. Inst, 2002.

R. A. Klein, SFPE Handbook of fire protection engineering

M. Hurley, D. Gottuk, J. R. Hall, E. Kuligowski, L. Puchovsky et al., , vol.29, 2002.

R. M. Rowell and M. A. Dietenberger, Thermal Properties, Combustion, and Fire Retardancy of Wood, Handbook of Wood Chemistry and Wood Composites

T. Group, , pp.127-149, 2013.

F. Shafizadeh and A. G. Radbury, Smoldering Combustion of Cellulosic Materials, J. Therm. Insul, vol.2, pp.141-152, 1978.

B. C. Hagen, V. Frette, G. Kleppe, and B. J. Arntzen, Onset of smoldering in cotton: Effects of density. Fire Saf, J, vol.46, pp.73-80, 2011.

S. Liodakis, I. K. Fetsis, and I. P. Agiovlasitis, The fire-retarding effect of inorganic phosphorus compounds on the combustion of cellulosic materials, J Therm Anal Calorim, vol.98, pp.285-291, 2009.

M. Steijns and P. Mars, The Adsorption of Sulfur by Microporous Materials, J. Colloid Interface Sci, vol.57, pp.175-180, 1976.

R. T. Yang and M. Steinberg, Combustion of Carbon. Effect of Sulfur Dioxide, J. Phys. Chem, vol.81, pp.1117-1118, 1977.

J. E. Chidester, Fire Research and Safty -Proceedings of the Fifth Joint Panel Meeting of the U.S. Japan Cooperative Program in Natural Resources, 1982.

H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel, vol.86, pp.1781-1788, 2007.

D. Klemm, B. Heublein, H. Fink, and A. Bohn, Cellulose: faszinierendes Biopolymer und nachhaltiger Rohstoff, Angew. Chem, vol.117, pp.3422-3458, 2005.

M. Poletto, A. J. Zattera, M. M. Forte, and R. M. Santana, Thermal decomposition of wood: Influence of wood components and cellulose crystallite size, Bioresour. Technol, vol.109, pp.148-153, 2012.

D. Fengel and G. Wegener, Wood: chemistry, ultrastructure, reactions, 1989.

D. Watkins, M. Hosur, A. Tcherbi-narteh, and S. Jeelani, Extraction and characterization of lignin from different biomass resources, J. Mater. Res. Technol, vol.4, pp.26-32, 2014.

J. Kim, S. Oh, H. Hwang, U. Kim, and J. Weon, Structural features and thermal degradation properties of various lignin macromolecules obtained from poplar wood (Populus albaglandulosa), Polym. Degrad. Stab, vol.98, pp.1671-1678, 2013.

T. Fisher, M. Hajaligol, B. Waymack, and D. Kellogg, Pyrolysis behavior and kinetics of biomass derived materials, J. Anal. Appl. Pyrolysis, vol.62, pp.331-349, 2002.

S. Rabe, Y. Chuenban, and B. Schartel, Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems, Materials, p.455, 2017.

Y. Lin, B. Yu, X. Jin, and Y. Hu, Study on thermal degradation and combustion behavior of flame retardant unsaturated polyester resin modified with a reactive phosphorus containing monomer, RSC Adv, vol.6, pp.49633-49642, 2016.

A. Abdel-kader, A. A. Ammar, and S. I. Saleh, Thermal behaviour of ammonium dihydrogen phosphate crystals in the temperature range 25-600 °C, Thermochim. Acta, vol.176, pp.293-304, 1991.

D. R. Lide, G. Baysinger, L. I. Berger, M. Frenkel, R. N. Goldberg et al., CRC Handbook of Chemistry and Physics

B. Schartel and T. R. Hull, Development of fire-retarded materials -Interpretation of cone calorimeter data, Fire Mater, vol.31, pp.327-354, 2007.

J. Lindholm, A. Brink, and M. Hupa, Cone calorimeter -A tool for measuring heat. Akad. Process Chemestry Cent, 2009.

L. A. Lowden and T. R. Hull, Flammability behaviour of wood and a review of the methods for its reduction, Fire Sci. Rev, vol.2, pp.1-19, 2013.

V. Babrauskas and G. Mulholland, Smoke and Soot Data Determinations in the Cone Calorimeter, Mathematical Modeling of Fires, pp.83-104, 2009.

J. Jiang, J. Li, J. Hu, and D. Fan, Effect of nitrogen phosphorus flame retardants on thermal degradation of wood, Constr. Build. Mater, vol.24, pp.2633-2637, 2010.

O. Grexa and H. Lübke, Polym. Degrad. Stab, vol.74, pp.427-432, 2001.

T. Harada, Time to ignition, heat release rate and fire endurance time of wood in cone calorimeter test, Fire Mater, vol.25, pp.161-167, 2001.

R. Sonnier, H. Vahabi, and L. Ferry, Pyrolysis-Combustion Flow Calorimetry : A Powerful Tool To Evaluate the Flame Retardancy of Polymers, Fire and Polymers VI: New Advances in Flame Retardant Chemistry and Science, pp.361-390, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00825571

M. Palumbo, A. M. Lacasta, A. Navarro, P. Giraldo, and B. Lesar, Improvement of fire reaction and mould growth resistance of a new bio-based thermal insulation material, Constr. Build. Mater, vol.13, pp.531-539, 2017.

G. Dorez, L. Ferry, R. Sonnier, and A. Taguet, Effect of cellulose, hemicellulose and lignin contents on pyrolysis and combustion of natural fibers, J. Anal. Appl. Pyrolysis, vol.107, pp.323-331, 2014.

, Environmental Product Declaration According to ISO 14025 and EN 15804 Available online, 2019.

, Holzbauhandbuch Holzfaserdämmstoffe Eigenschaften -Anforderungen -Anwendungen

. Verband-holzfaser-dämmstoffe, , 2019.

, Foodstuffs -Determination of trace elements -Pressure digestion, DIN EN 13805, 2002.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Sample Availability: Biopolymer-based flame-retardant additives are available from the authors. © 2020 by the authors. Licensee MDPI